Recovering Joint Probability from Pairwise Marginals

Shahana Ibrahim Joint Work with Dr. Xiao Fu

Feb 2020

School of Electrical Engineering and Computer Science, Oregon State University, Corvallis

Contents

- Motivation.
- Existing approach.
- Proposed method and our contributions.
- Theoretical analysis.
- Experimental results.
- Conclusion.

Joint PMF Learning

- Joint probability mass function (PMF) is considered as the **'gold standard'** in statistical machine learning.
- Joint PMF estimation has numerous applications:
 - recommender systems
 - classification tasks
 - crowdsourcing
 - survey/database completion
- In these applications, we are given with partial observations of the random variables.
- Knowing the joint PMF of the random variables can help us us predicting the missing data.

Joint PMF of N Random Variables

• Short hand notation for $\Pr(Z_1 = z_1^{(i_1)}, \dots, Z_N = z_N^{(i_N)})$ is $\Pr(i_1, \dots, i_N)$

Challenges in Joint PMF Learning

- Suppose we have 10 random variables each taking 10 different values.
- Then joint probability of these 10 random variables have 10^{10} entries!!!
- The 'naive' approach for joint PMF estimation is counting the occurences of the joint variable realizations which means we require $S \gg 10^{10}$ examples for a reasonable accuracy.
- This makes the 'naive' approach very inaccurate.

Challenges in Joint PMF Learning

- Suppose we have 10 random variables each taking 10 different values.
- Then joint probability of these 10 random variables have 10^{10} entries!!!
- The 'naive' approach for joint PMF estimation is counting the occurences of the joint variable realizations which means we require $S \gg 10^{10}$ examples for a reasonable accuracy.
- This makes the 'naive' approach very inaccurate.

Feb 2020

What are the workarounds?

Existing Alternatives for Joint PMF Learning

• These are effective surrogates, but do not directly address the fundamental challenge in estimating high-dimensional joint probability from limited samples.

• These are effective surrogates, but do not directly address the fundamental challenge in estimating high-dimensional joint probability from limited samples.

Can we ever reliably estimate the joint PMF of variables given limited data without any structural assumptions?

Joint PMF Learning via Tensor Decomposition

- Kargas et al. proposed a new framework for blindly estimating the joint probability mass function (PMF) of N discrete random variables [Kargas et al., 2018].
- The method is based on establishing a link between joint PMF and tensors.
- Joint PMF $\Pr(Z_1 = z_1^{(i_1)}, \dots, Z_N = z_N^{(i_N)})$, where Z_n can take I_n different values can be represented as a N-th order tensor $\underline{X} \in \mathbb{R}^{I_1 \times \dots \times I_N}$ with

$$\underline{\boldsymbol{X}}(i_1,\ldots,i_N) = \mathsf{Pr}(Z_1 = z_1^{(i_1)},\ldots,Z_N = z_N^{(i_N)}).$$

• If an N-th order tensor \underline{X} has CP rank F, then it can be **uniquely** expressed as,

$$\underline{X}(i_1,\ldots,i_N) = \sum_{f=1}^F \lambda(f) \prod_{n=1}^N A_n(i_n,f), \quad \underline{X} = \llbracket \lambda, A_1,\ldots, A_N \rrbracket.$$

where $oldsymbol{A}_n \in \mathbb{R}^{I_n imes F}$ and $oldsymbol{\lambda} \in \mathbb{R}^F.$

Tensor Decomposition and Joint PMF

• The key point in [Kargas et al., 2018] is that **any joint PMF admits a naive Bayes model representation**;

• i.e., It can be generated from a latent variable model with just one hidden variable.

$$\Pr(Z_1 = z_1^{(i_1)}, \dots, Z_N = z_N^{(i_N)}) = \sum_{f=1}^F \Pr(H = f) \Pr(Z_1 = z_1^{(i_1)}, \dots, Z_N = z_N^{(i_N)} | H = f)$$
$$= \sum_{f=1}^F \Pr(H = f) \prod_{n=1}^N \Pr(Z_n = z_n^{(i_n)} | H = f)$$

Tensor Decomposition and Joint PMF

• Putting together,

$$\underline{X}(i_1, \dots, i_N) = \Pr(Z_1 = z_1^{(i_1)}, \dots, Z_N = z_N^{(i_N)}).$$
(1)
LHS of (1):
$$\underline{X}(i_1, \dots, i_N) = \sum_{f=1}^F \lambda(f) \prod_{n=1}^N A_n(i_n, f),$$

RHS of (1):
$$\Pr(Z_1 = i_1, \dots, Z_K = i_N) = \sum_{f=1}^F \Pr(H = f) \prod_{n=1}^N \Pr(Z_n = z_n^{(i_n)} | H = f)$$

Decomposition of joint PMF tensor can identify the latent factors A_n 's and λ ,

$$\boldsymbol{A}_n(i_n, f) = \Pr(Z_n = i_n | H = f), \quad \boldsymbol{\lambda}(f) = \Pr(H = f).$$
(2)

Joint PMF Learning from Third-order Marginals¹

Marginalization Coupled Tensor Decomposition Reconstruction

$$\begin{array}{c} & & & \\ &$$

¹[Kargas et al., 2018]

Challenges in the Existing Approach

- The result in [Kargas et al., 2018] is inspiring, but a couple of major hurdles exist for practical implementations.
- High sample complexity: Estimating three-dimensional marginals $Pr(i_j, i_k, i_\ell)$ is not easy, since one needs many co-occurrences of three random variables.
- **High computational complexity:** Tensor decomposition is a hard computation problem [Hillar and Lim, 2013]—and the optimization problem involves many tensors.

Challenges in the Existing Approach

- The result in [Kargas et al., 2018] is inspiring, but a couple of major hurdles exist for practical implementations.
- High sample complexity: Estimating three-dimensional marginals $Pr(i_j, i_k, i_\ell)$ is not easy, since one needs many co-occurrences of three random variables.
- **High computational complexity:** Tensor decomposition is a hard computation problem [Hillar and Lim, 2013]—and the optimization problem involves many tensors.

Can we address these challenges?

• To advance the task of joint PMF recovery from marginal distributions, we propose a **pairwise marginal-based** approach.

Proposition 1: Consider discrete RVs Z_1, \ldots, Z_N . Assume $I_1 = \ldots = I_N = I$. Denote $p \in (0,1]$ as the probability that an RV is observed. Let S be the number of available data samples. Assume that $\min((2/s)\log(2/\delta), 1) \le p \le 1$. Then, with probability at least $1 - \delta$,

$$\begin{aligned} \|\boldsymbol{X}_{jk} - \widehat{\boldsymbol{X}}_{jk}\|_{\mathrm{F}} &\leq \sqrt{2}(1 + \sqrt{\log(2/\delta)})/(p\sqrt{S}) \\ \|\underline{\boldsymbol{X}}_{jk\ell} - \widehat{\underline{\boldsymbol{X}}}_{jk\ell}\|_{\mathrm{F}} &\leq \sqrt{2I}(1 + \sqrt{\log(2I/\delta)})/(p^{3/2}\sqrt{S}) \end{aligned}$$

hold for any distinct j, k, ℓ , where \widehat{X}_{jk} and $\widehat{\underline{X}}_{jk\ell}$ represent the empirical estimate of X_{jk} and $\underline{X}_{jk\ell}$ respectively, obtained via sample averaging.

• With the same amount of data, the second-order statistics can be estimated to a much higher accuracy, compared to the third-order ones.

- Consider any pairwise marginal, $\Pr(i_j, i_k) = \sum_{f=1}^F \Pr(f) \Pr(i_j | f) \Pr(i_k | f)$
- Since we can associate

$$\begin{split} \boldsymbol{X}_{jk}(i_j, i_k) &= \mathsf{Pr}(i_j, i_k), \\ \boldsymbol{A}_j(i_j | f) &= \mathsf{Pr}(i_j | f), \quad \boldsymbol{\lambda}(f) = \mathsf{Pr}(f), \\ \boldsymbol{X}_{jk} &= \boldsymbol{A}_j \boldsymbol{D}(\boldsymbol{\lambda}) \boldsymbol{A}_k^{\mathsf{T}}, \end{split} \quad \text{where } \boldsymbol{D}(\boldsymbol{\lambda}) = \mathrm{Diag}(\boldsymbol{\lambda}). \end{split}$$

• Hence, the key information for recovering the joint PMF (i.e., A_n 's and λ) still shows up in the pairwise marginals.

- Consider any pairwise marginal, $\Pr(i_j, i_k) = \sum_{f=1}^F \Pr(f) \Pr(i_j | f) \Pr(i_k | f)$
- Since we can associate

$$\begin{split} \boldsymbol{X}_{jk}(i_j, i_k) &= \mathsf{Pr}(i_j, i_k), \\ \boldsymbol{A}_j(i_j | f) &= \mathsf{Pr}(i_j | f), \quad \boldsymbol{\lambda}(f) = \mathsf{Pr}(f), \\ \hline \boldsymbol{X}_{jk} &= \boldsymbol{A}_j \boldsymbol{D}(\boldsymbol{\lambda}) \boldsymbol{A}_k^{\mathsf{T}}, \\ \end{split} \text{ where } \boldsymbol{D}(\boldsymbol{\lambda}) = \mathrm{Diag}(\boldsymbol{\lambda}). \end{split}$$

• Hence, the key information for recovering the joint PMF (i.e., A_n 's and λ) still shows up in the pairwise marginals.

However, there are some challenges to be addressed in pairwise-marginal based approach.

Identifiability of Matrix Factorization

- Key idea used for the triple-based approach in [Kargas et al., 2018] is that tensors admit unique CPD, under mild conditions.
- Pairwise distributions such as $X_{jk} = A_j D(\lambda) A_k^T$ are matrices, and low-rank matrix decomposition is in general *nonunique*.
- A natural way in our case would be to employ **NMF** (nonnegative matrix factorization) tools, since the latent factors are all nonnegative.

Seperability and Sufficiently Scattered

• Assume that the nonnegative matrix X is generated by the product of two latent matrices, i.e., $X = WH^{\top}$, where $W \in \mathbb{R}^{L \times F}$ and $H \in \mathbb{R}^{K \times F}$, $W \ge 0, H \ge 0$.

Seperability: [Donoho and Stodden, 2003] If $H \ge 0$, and $\Lambda = \{l_1, \ldots, l_F\}$ such that $H(\Lambda, :) = \Sigma$ holds, where $\Sigma = \text{Diag}(\alpha_1, \ldots, \alpha_F)$ and $\alpha_f > 0$, then, H satisfies the *separability condition*. When $\Lambda = \{l_1, \ldots, l_F\}$ satisfies $\|H(l_f, :) - e_f\|_2 \le \varepsilon$ for $f = 1, \ldots, F$, H is called ε -separable.

Sufficiently scattered: [Huang et al.,2014] Assume that $H \ge 0$ and $C \subseteq$ $\operatorname{cone}\{H^{\top}\}\$ where $C = \{\mathbf{x} \in \mathbb{R}^{F} \mid \mathbf{x}^{\top}\mathbf{1} \ge \sqrt{F-1}\|\mathbf{x}\|_{2}\}\$ is a second-order cone. In addition, assume that $\operatorname{cone}\{H^{\top}\} \not\subseteq \operatorname{cone}\{Q\}\$ for any orthonormal $Q \in \mathbb{R}^{K \times K}$ except for the permutation matrices. Then, H is called *sufficiently scattered*.

- If one of W and H satisfies the separability condition and the other has full column rank, we can provably identify W and H up to scaling and permutation ambiguities [Gillis and Vavasis, 2014, Arora et al., 2013].
- If W and H are both sufficiently scattered, then the model $X = WH^{\top}$ is unique up to scaling and permutation ambiguities [Huang et al., 2014].

Seprability and Sufficiently Scattered

• Our goal is to identify A_n and λ from the available pairwise marginals $X_{jk} = A_j D(\lambda) A_k^{\text{T}}$'s using NMF model.

$$\boldsymbol{X}_{jk} = \underbrace{\boldsymbol{A}_{j}}_{\boldsymbol{W}} \underbrace{\boldsymbol{D}(\boldsymbol{\lambda})\boldsymbol{A}_{k}^{\top}}_{\boldsymbol{H}^{\top}}$$
(3)

- Note that F is the inner dimension of $A_j \in \mathbb{R}^{I_j \times F}, A_k \in \mathbb{R}^{I_k \times F}$ and the dimension of $D(\lambda) \in \mathbb{R}^{F \times F}$.
- Since F could be much larger than the I_j 's. i.e., $F \gg \min\{I_j, I_k\}$ in general, separability or sufficiently scattered cannot be achieved.

When can NMF be unique?

- Intuitively, if one has many rows in $H \ge 0$, then there will be some rows approaching the extreme rays of the nonnegative cone.
- This concept was formalized [lbrahim et al., 2019]:

Lemma 1: Let $\rho > 0, \varepsilon > 0$, and assume that the rows of $\boldsymbol{H} \in \mathbb{R}^{L \times F}$ are generated within the (F-1)-probability simplex uniformly at random (and then nonnegatively scaled). If $L \ge \Omega\left(\frac{\varepsilon^{-2(F-1)}}{F}\log\left(\frac{F}{\rho}\right)\right)$, then, with probability greater than or equal to $1 - \rho$, there exist rows of \boldsymbol{H} indexed by $l_1, \ldots l_F$ such that $\|\boldsymbol{H}(l_f, :) - \boldsymbol{e}_f^{\mathsf{T}}\|_2 \le \varepsilon, \ f = 1, \ldots, F.$

• Also, [Ibrahim et al., 2019] proposes that more rows in *H* increases the probability that *H* is sufficiently scattered, and the probability is higher than that of *H* being separable, under the same *L*.

- Consider a splitting of the indices of the N variables, i.e., $S_1 = \{\ell_1, \ldots, \ell_M\}$ and $S_2 = \{\ell_{M+1}, \ldots, \ell_N\}$ such that $S_1 \cup S_2 = \{1, \ldots, N\}$, $S_1 \cap S_2 = \emptyset$.
- Then, we construct the following matrix:

$$\widetilde{\mathbf{X}} = \begin{bmatrix} \mathbf{X}_{\ell_{1}\ell_{M+1}} & \dots & \mathbf{X}_{\ell_{1}\ell_{N}} \\ \vdots & \vdots & \vdots \\ \mathbf{X}_{\ell_{M}\ell_{M+1}} & \dots & \mathbf{X}_{\ell_{M}\ell_{N}} \end{bmatrix}$$

$$= \underbrace{\begin{bmatrix} \mathbf{A}_{\ell_{1}} \\ \vdots \\ \mathbf{A}_{\ell_{M}} \end{bmatrix}}_{\mathbf{W}} \underbrace{\mathbf{D}(\boldsymbol{\lambda})}_{\mathbf{H}^{\top}} \underbrace{[\mathbf{A}_{\ell_{M+1}}^{\top}, \dots, \mathbf{A}_{\ell_{N}}^{\top}]}_{\mathbf{H}^{\top}}.$$
(4)

• The idea is to construct \widetilde{X} such that $F \leq \min\{MI, (N - M)I\}$ so that W and H may satisfy the conditions for NMF identifiability.

- Consider a splitting of the indices of the N variables, i.e., $S_1 = \{\ell_1, \ldots, \ell_M\}$ and $S_2 = \{\ell_{M+1}, \ldots, \ell_N\}$ such that $S_1 \cup S_2 = \{1, \ldots, N\}, S_1 \cap S_2 = \emptyset$.
- Then, we construct the following matrix:

$$\widetilde{X} = \begin{bmatrix} X_{\ell_{1}\ell_{M+1}} & \dots & X_{\ell_{1}\ell_{N}} \\ \vdots & \vdots & \vdots \\ X_{\ell_{M}\ell_{M+1}} & \dots & X_{\ell_{M}\ell_{N}} \end{bmatrix}$$

$$= \begin{bmatrix} A_{\ell_{1}} \\ \vdots \\ A_{\ell_{M}} \end{bmatrix} D(\lambda) \underbrace{[A_{\ell_{M+1}}^{\top}, \dots, A_{\ell_{N}}^{\top}]}_{H^{\top}}.$$
(5)

• The idea is to construct \widetilde{X} such that $F \leq \min\{MI, (N - M)I\}$ so that W and H may satisfy the conditions for NMF identifiability.

However, there are a couple of caveats.

- Finding a suitable splitting of S_1, S_2 such that W and H are sufficiently scattered is highly nontrivial [Huang et al.,2014].
- To address this challenge, we consider the following coupled NMF problem:

$$\begin{array}{l} \underset{\{\boldsymbol{A}_n\}_{n=1}^N \boldsymbol{\lambda}}{\text{minimize}} \sum_{j,k \in \boldsymbol{\Omega}} \operatorname{dist} \left(\boldsymbol{X}_{jk} \mid\mid \boldsymbol{A}_j \boldsymbol{D}(\boldsymbol{\lambda}) \boldsymbol{A}_k^\top \right) \\ \text{subject to } \mathbf{1}^\top \boldsymbol{A}_j = \mathbf{1}^\top, \ \boldsymbol{A}_j \geq \mathbf{0}, \ \mathbf{1}^\top \boldsymbol{\lambda} = 1, \ \boldsymbol{\lambda} \geq \mathbf{0} \end{array}$$

where Ω contains the index set of (j,k)'s such that j < k and the joint PMF $Pr(i_j, i_k)$ is accessible.

- Finding a suitable splitting of S_1, S_2 such that W and H are sufficiently scattered is highly nontrivial [Huang et al.,2014].
- To address this challenge, we consider the following coupled NMF problem:

$$\underset{\{\boldsymbol{A}_n\}_{n=1}^N \boldsymbol{\lambda}}{\text{minimize}} \sum_{j,k \in \boldsymbol{\Omega}} \operatorname{dist} \left(\boldsymbol{X}_{jk} \mid \mid \boldsymbol{A}_j \boldsymbol{D}(\boldsymbol{\lambda}) \boldsymbol{A}_k^{\mathsf{T}} \right)$$
(7a)

subject to
$$\mathbf{1}^{\mathsf{T}} \boldsymbol{A}_j = \mathbf{1}^{\mathsf{T}}, \ \boldsymbol{A}_j \ge \mathbf{0}, \ \mathbf{1}^{\mathsf{T}} \boldsymbol{\lambda} = 1, \ \boldsymbol{\lambda} \ge \mathbf{0}$$
 (7b)

where Ω contains the index set of (j,k)'s such that j < k and the joint PMF $Pr(i_j, i_k)$ is accessible.

Next, our task is to analyze under what conditions (7) can identify A_j 's and λ .

Theorem 1 - Recoverability

Theorem 1: Assume that that $\Pr(i_j, i_k)$'s for $j, k \in \Omega$ are available and that $\Pr(f) \neq 0$ for $f = 1, \ldots, F$. Suppose that there exists $S_1 = \{\ell_1, \ldots, \ell_M\}$ and $S_2 = \{\ell_{M+1}, \ldots, \ell_Q\}$ such that $Q \leq N$ and $S_1 \cup S_2 \subseteq \{1, \ldots, N\}, S_1 \cap S_2 = \emptyset$. Also assume the following conditions hold:

- the matrices $[\mathbf{A}_{\ell_1}^{\top}, \dots, \mathbf{A}_{\ell_M}^{\top}]^{\top}$ and $[\mathbf{A}_{\ell_{M+1}}^{\top}, \dots, \mathbf{A}_{\ell_Q}^{\top}]^{\top}$ are sufficiently scattered;
- all pairwise marginal distributions $Pr(i_j, i_k)$'s for $j \in S_1$ and $k \in S_2$ are available;
- every *T*-concatenation of A_n 's, i.e., $[A_{n_1}^{\top}, \ldots, A_{n_T}^{\top}]^{\top}$, is a full column rank matrix, if $I_{n_1} + \ldots + I_{n_T} \ge F$;
- for every $j \notin S_1 \cup S_2$ there exists a set of $r_t \in S_1 \cup S_2$ for $t = 1, \ldots, T$ such that $\Pr(i_j, i_{r_t})$ or $\Pr(i_{r_t}, i_j)$ are available.

Then, solving Problem (7) recovers $Pr(i_j|f)$ and Pr(f) for j = 1, ..., N, f = 1, ..., F, thereby the joint PMF $Pr(i_1, ..., i_N)$.

- The criterion spares one the effort for first finding S_1 and S_2 and then constructing the matrix \widetilde{X} .
- Theorem 1 does not impose any restrictions on F, and thus can be very general.

- The criterion spares one the effort for first finding S_1 and S_2 and then constructing the matrix \widetilde{X} .
- Theorem 1 does not impose any restrictions on F, and thus can be very general.

Our analysis shows that a stronger identifiability guarantee can be derived if F is below a certain threshold.

Theorem 2 : Enhanced Recoverability

Theorem 2: Assume that $\Pr(f) \neq 0$ for $f = 1, \ldots, F$, and that $\Pr(i_j, i_k)$'s for all j, k are available and $\Pr(i_k, i_j) = \Pr(i_j, i_k)$. If i) $\mathbf{Z} = [\mathbf{A}_1^{\mathsf{T}}, \ldots, \mathbf{A}_N^{\mathsf{T}}]^{\mathsf{T}} \in \mathbb{R}^{NI \times F}$ is separable or sufficiently scattered ii) $F \leq (N-1)I - 1$, then, solving the problem in (7) recovers $\Pr(i_j|f)$ and $\Pr(f)$ for $j = 1, \ldots, N$, $f = 1, \ldots, F$, thereby the joint PMF $\Pr(i_1, \ldots, i_N)$.

- In Theorem 1, the recoverability of the joint PMF depends on if $W = [A_{\ell_1}^{\top}, \dots, A_{\ell_M}^{\top}]^{\top}$ and $H = [A_{\ell_{M+1}}^{\top}, \dots, A_{\ell_N}^{\top}]^{\top}$ are sufficiently scattered.
- However, under Theorem 2, the recoverability of the joint PMF depends on Z being scattered/seperable.
- Having more rows increases the probability of being separable/sufficiently scattered, thus stronger guarantee for identifibaility.

Algorithm for Coupled NMF

• Recall the coupled NMF problem

$$\begin{array}{l} \underset{\{\boldsymbol{A}_n\}_{n=1}^N \boldsymbol{\lambda}}{\text{minimize}} \ \sum_{j,k \in \boldsymbol{\Omega}} \operatorname{dist} \left(\boldsymbol{X}_{jk} \mid\mid \boldsymbol{A}_j \boldsymbol{D}(\boldsymbol{\lambda}) \boldsymbol{A}_k^\top \right) \\ \text{subject to } \mathbf{1}^\top \boldsymbol{A}_j = \mathbf{1}^\top, \ \boldsymbol{A}_j \geq \mathbf{0}, \ \mathbf{1}^\top \boldsymbol{\lambda} = 1, \ \boldsymbol{\lambda} \geq \mathbf{0} \end{array}$$

where Ω contains the index set of (j,k)'s such that j < k and the joint PMF $Pr(i_j, i_k)$ is accessible.

- To handle this, we propose a simple procedure based on *block coordinate descent* (BCD).
- To be specific, we cyclically minimize the constrained optimization problem w.r.t.

 A_k , when fixing A_j for all $j \neq k$ and λ .

$$\begin{array}{l} \underset{A_k}{\operatorname{minimize}} & \sum_{j \in \Omega_k} \operatorname{dist} \left(\boldsymbol{X}_{jk} \mid \mid \boldsymbol{A}_j \boldsymbol{D}(\boldsymbol{\lambda}) \boldsymbol{A}_k^{\top} \right) \\ \\ \text{subject to } & \mathbf{1}^{\top} \boldsymbol{A}_k = \mathbf{1}^{\top}, \ \boldsymbol{A}_k \geq \mathbf{0}, \end{array}$$
(9a)

where Ω_k is the index set of j such that $Pr(i_j, i_k)$ is available.

- In our work, we adopt the KL divergence since it is natural for measuring distance between PMFs.
- Many off-the-shelf convex optimization tools can be employed to solve the above, e.g., mirror descent.
- We show that with a carefully designed initialization scheme, accurately recovering joint PMFs from pairs is viable.

Gram–Schmidt-like Initialization

- We also propose a simple algebraic algorithm for identifying A_n and λ .
- Recall the splitting of random variables and construction of matrix \widetilde{X} .

$$\widetilde{\boldsymbol{X}} = \begin{bmatrix} \boldsymbol{X}_{\ell_{1}\ell_{M+1}} & \dots & \boldsymbol{X}_{\ell_{1}\ell_{N}} \\ \vdots & \vdots & \vdots \\ \boldsymbol{X}_{\ell_{M}\ell_{M+1}} & \dots & \boldsymbol{X}_{\ell_{M}\ell_{N}} \end{bmatrix}$$

$$= \underbrace{\begin{bmatrix} \boldsymbol{A}_{\ell_{1}} \\ \vdots \\ \boldsymbol{A}_{\ell_{M}} \end{bmatrix}}_{\boldsymbol{W}} \underbrace{\boldsymbol{D}(\boldsymbol{\lambda})}_{\boldsymbol{H}^{\top}} \underbrace{[\boldsymbol{A}_{\ell_{M+1}}^{\top}, \dots, \boldsymbol{A}_{\ell_{N}}^{\top}]}_{\boldsymbol{H}^{\top}}.$$
(10)

• Let us assume W is full rank and H is separable.

• Under the separability condition, we have $H(\Lambda, :) = \Sigma = Diag(\alpha_1, \dots, \alpha_F)$ and

$$W\Sigma = \widetilde{X}(\Lambda, :).$$
 (11)

- i.e, Estimation of W is an index identification task and can be achieved by using Successive projection algorithm (SPA) [Araújo et al.,2001]
 - SPA is very scalable- a Gram-Schmitt-like algorithm, which only consists of norm comparison and orthogonal projection.
 - SPA is robust to noise and slight violation of separability.

• $A_{\ell_n} \in \mathbb{R}^{I_{\ell_n} \times F}, n \in \{1, \dots, M\}$ can be identified upto column permutations $(\widehat{A}_{\ell_n} = A_{\ell_n} \Pi)$ since

$$\boldsymbol{W} = \begin{bmatrix} \boldsymbol{A}_{\ell_1} \\ \vdots \\ \boldsymbol{A}_{\ell_M} \end{bmatrix} \boldsymbol{D}(\boldsymbol{\lambda}), \boldsymbol{1}^{\mathsf{T}} \boldsymbol{A}_k = \boldsymbol{1}^{\mathsf{T}}, \ \boldsymbol{A}_k \ge \boldsymbol{0}$$
(12)

- A_{ℓ_n} for $n \in \{M + 1, \dots, N\}$ can be identified upto column permutations, since H matrix can be estimated using (constrained) least squares, $\underset{H>0}{\operatorname{squares}} \min_{H>0} \|\widetilde{X} WH^{\mathsf{T}}\|_F^2$
- $\boldsymbol{\lambda}$ can be identified as $\widehat{\boldsymbol{\lambda}} = (\boldsymbol{H} \odot \widetilde{\boldsymbol{W}})^{\dagger} \text{vec}(\widetilde{\boldsymbol{X}}) = \boldsymbol{\Pi} \boldsymbol{\lambda}$, since

$$\widetilde{\boldsymbol{X}} = \underbrace{\begin{bmatrix} \boldsymbol{A}_{\ell_1} \\ \vdots \\ \boldsymbol{A}_{\ell_M} \end{bmatrix}}_{\widetilde{\boldsymbol{W}}} \boldsymbol{D}(\boldsymbol{\lambda}) \underbrace{\begin{bmatrix} \boldsymbol{A}_{\ell_{M+1}}^{\top}, \dots, \boldsymbol{A}_{\ell_N}^{\top} \end{bmatrix}}_{\boldsymbol{H}^{\top}}.$$
(13)

• Named as CNMF-SPA – scalable algorithm, a good choice for initialization.

Theorem 3 - Accuracy of CNMF-SPA

Theorem 3: Let p and S be the probability of each RV being observed in one realization of $\Pr(Z_1, \ldots, Z_N)$ and the number of total realizations. Suppose that $I_n = I$ for all n. Assume that $\|\widehat{X}_{ij}(:,q)\|_1 \ge \eta > 0$ for any q, i, j, and that the rows of A_n 's are generated from the probability simplex uniformly at random and then positively scaled. Also assume that $\min(\frac{2}{S}\log(4/\delta), 1) \le p \le 1, N = M + \Omega(\frac{M\kappa^3(\mathbf{W})}{I\sqrt{F}}\log(\frac{F}{\delta}))$ and $F = O\left(\frac{\eta p\sqrt{S}}{MI\kappa^2(\mathbf{W})\sqrt{\log(1/\delta)}}\min\left(\frac{\sigma_{\min}(\mathbf{W})}{\sqrt{M}}, \frac{\sigma_{\max}(\mathbf{H})}{4\sqrt{N-M}}\right)\right)$. Then, applying CNMF-SPA on $\widetilde{\mathbf{X}}$ with $S_1 = \{1, \ldots, M\}$ and $S_2 = \{M+1, \ldots, N\}$ outputs

$$\|\boldsymbol{A}_{n} - \widehat{\boldsymbol{A}}_{n}\|_{2} = O\left(\kappa^{3}(\boldsymbol{W})MF\sqrt{L}\eta^{-1}\zeta\right), \ \forall n,$$
$$\|\widehat{\boldsymbol{\lambda}} - \boldsymbol{\lambda}\|_{2} = O\left(\kappa^{3}(\boldsymbol{W})\kappa(\boldsymbol{H})MF\sqrt{MK}\eta^{-1}\zeta\right),$$

with probability at least $1 - \delta$, where L = MI, K = (N - M)I, W and H follow the definition in (13) and $\zeta = \max\left(\frac{\sqrt{I\log(2/\delta)}}{\eta p\sqrt{S}}, \frac{\sigma_{\min}(W)}{\kappa^2(W)M\sqrt{F}}\right)$.

Feb 2020

Experiments: Synthetic Data

- We consider N = 5 RV's where each variable takes I = 10 discrete values.
- The columns of the conditional PMF matrices (factor matrices) $A_n \in \mathbb{R}^{I_n \times F}$ and the prior probability vector $\lambda \in \mathbb{R}^F$ are generated with F = 5.
- The ε -separability condition on H is ensured with $\varepsilon = 0.1$.
- We generate S realizations of the joint PMF by randomly hiding each variable realization with observation probability p = 0.5.

Experiments: Synthetic Data

Table 1: MSE & MRE for N = 5, F = 5, I = 10, p = 0.5

Algorithms	Metric	$S = 10^{3}$	$S = 10^4$	$S = 10^{5}$	$S = 10^{6}$
CNMF-SPA	MSE	0.0703	0.0257	0.0213	0.0207
CNMF-OPT	MSE	0.0520	0.0234	0.0210	0.0206
CNMF-SPA-EM	MSE	0.0580	0.0228	0.0209	0.0206
RAND-EM	MSE	0.0923	0.0415	0.0447	0.0476
CTD	MSE	0.1644	0.0253	0.0212	0.0207
CNMF-SPA	MRE	0.7897	0.3171	0.1104	0.0338
CNMF-OPT	MRE	0.6797	0.2316	0.0769	0.0235
CNMF-SPA-EM	MRE	0.6847	0.2095	0.0711	0.0217
RAND-EM	MRE	0.8304	0.3952	0.2926	0.3179
CTD	MRE	0.9137	0.2993	0.0959	0.0313

• **CNMF-SPA-EM** : EM algorithm proposed in [Yeredor and Haardt,2019] initialized using CNMF-SPA, **CTD** : Coupled Tensor Decomposition based algorithm proposed in [Kargas et al.,2018].

Experiments: Synthetic Data

Table 2: MSE & MRE for N = 15, F = 10, I = 10, p = 0.5

Algorithms	Metric	$S = 10^3$	$S = 10^4$	$S = 10^5$	$S = 10^{6}$
CNMF-SPA	MSE	0.1183	0.1030	0.1063	0.1041
CNMF-OPT	MSE	0.0218	0.0042	0.0022	0.0020
CNMF-SPA-EM	MSE	0.0894	0.0110	0.0056	0.0018
RAND-EM	MSE	0.0376	0.0112	0.0149	0.0069
CTD	MSE	0.0329	0.0359	0.0404	0.0355

Experiments: Recommender Systems

- We test the approaches using the **MovieLens 20M** dataset [Harper and Konstan, 2015]. Ratings ranges in $\{1, 2, \dots, 5\}$.
- We choose different movie genres, namely, action, animation and romance subsets and each subset contains 30 popular movies. Hence, for every subset, N = 30.
- \bullet We create the validation and testing sets by randomly hiding 20% and 30% of the dataset.
- The remianing 50% is used for training (learning joint PMF in our approach).
- We predict the rating for a movie N, by user k via computing $\mathbb{E}[i_N|r_k(1), \ldots, r_k(N-1)]$ (i.e., using the MMSE estimator), where $r_k(i)$ denotes the rating of movie i by user k.

Recommender Systems

Table 3: MovieLens Action Movies set

Algorithm	RMSE	MAE	Time (s)
CNMF-SPA	0.8497 ± 0.0114	$0.6663 {\pm} 0.0059$	0.031
CNMF-OPT	0.8167 ± 0.0035	0.6321±0.0040	70.018
CNMF-SPA-EM	0.7840±0.0025	0.5991±0.0031	2.424
CTD	0.8770 ± 0.0088	$0.6649 {\pm} 0.0076$	52.253
BMF	0.8011 ± 0.0012	$0.6260{\pm}0.0013$	46.637
Global Average	$0.9468 {\pm} 0.0018$	$0.6956{\pm}0.0017$	_
User Average	0.8950 ± 0.0010	$0.6825{\pm}0.0010$	_
Movie Average	0.8847±0.0018	$0.6982{\pm}0.0012$	_

Recommender Systems

Table 4: MovieLens Animation Movies set

Algorithm	RMSE	MAE	Time (s)
CNMF-SPA	0.8705 ± 0.0095	$0.6798{\pm}0.0060$	0.028
CNMF-OPT	0.8124±0.0031	0.6241±0.0041	61.018
CNMF-SPA-EM	0.8170 ± 0.0075	$0.6317{\pm}0.0086$	2.424
CTD	0.8300 ± 0.0053	0.6335±0.0029	48.253
BMF	0.8408±0.0023	$0.6553{\pm}0.0015$	46.637
Global Average	0.9371 ± 0.0021	$0.7042{\pm}0.0014$	_
User Average	0.8850 ± 0.0009	$0.6632{\pm}0.0011$	_
Movie Average	0.9027 ± 0.0019	$0.6900{\pm}0.0013$	_

Recommender Systems

Table 5: MovieLens Romance Movies set

Algorithm	RMSE	MAE	Time (s)
CNMF-SPA	0.9280 ± 0.0066	0.7376±0.0076	0.032
CNMF-OPT	$0.9076 {\pm} 0.0014$	0.7123±0.0029	60.762
CNMF-SPA-EM	0.9057±0.0052	0.7106±0.0049	1.881
CTD	0.9498 ± 0.0085	$0.7416{\pm}0.0054$	47.010
BMF	0.9337±0.0007	0.7463±0.0009	31.823
Global Average	1.0019 ± 0.0007	$0.8078 {\pm} 0.0008$	_
User Average	$1.0195{\pm}0.0007$	$0.7862{\pm}0.0008$	_
Movie Average	0.9482 ± 0.0007	$0.7599{\pm}0.0007$	_

Experiments: Classification

- We use several UCI datasets in the classification tasks.
- We split each dataset into training, validation and testing sets in the ratio of 50:20:30.
- We estimate the joint PMF of the features and the label using the training set, and then predict the labels on the testing data by constructing an MAP predictor.
- For each dataset, we perform 20 trials with randomly partitioned training/testing/validation sets.

Table 6: UCI Dataset Votes

Algorithm	Accuracy (%)	Time (sec.)
CNMF-SPA	88.39+/-2.61	0.005
CNMF-OPT	95.28+/-3.84	4.963
CNMF-SPA-EM	92.13+/-3.13	0.016
CTD	90.76+/-3.16	2.056
SVM	94.42+/-2.19	0.021
Linear Regression	95.11+/-1.77	0.020
Neural Net	93.05+/-3.30	0.106
SVM-RBF	90.38+/-3.74	0.009
Naive Bayes	88.93+/-2.76	0.018

Classification

Table 7: UCI Dataset Car

Algorithm	Accuracy (%)	Time (s)
CNMF-SPA	69.88±1.52	0.008
CNMF-OPT	85.29±2.37	2.306
CNMF-SPA-EM	86.27±2.09	0.014
CTD	84.92±2.12	0.845
SVM	84.07±1.59	0.315
Linear Regression	81.13±2.14	0.083
Neural Net	83.89±2.90	0.570
SVM-RBF	76.25±2.56	1.039
Naive Bayes	84.09±2.50	0.048

Classification

Table 8: UCI Dataset Credit

Algorithm	Accuracy (%)	Time (s)
CNMF-SPA	86.38±2.25	0.009
CNMF-OPT [Proposed]	86.41±2.69	4.985
CNMF-SPA-EM	85.79±2.07	0.012
CTD	86.13±2.41	3.774
SVM	85.99±2.04	0.176
Linear Regression	86.37±2.17	0.073
Neural Net	$85.94{\pm}2.11$	0.515
SVM-RBF	82.89±2.77	0.022
Naive Bayes	85.50±2.42	0.046

• We proposed a **new framework for recovering joint PMF** of any number of discrete random variables from marginal distributions.

- We proposed a **new framework for recovering joint PMF** of any number of discrete random variables from marginal distributions.
- Our approach only uses **two-dimensional marginals**, which naturally has **reduced-sample complexity** and **computational burden**.

- We proposed a **new framework for recovering joint PMF** of any number of discrete random variables from marginal distributions.
- Our approach only uses **two-dimensional marginals**, which naturally has **reduced-sample complexity** and **computational burden**.
- We showed that under certain conditions, the recoverability of joint PMF from pairwise marginals can be **provably guaranteed**.

- We proposed a **new framework for recovering joint PMF** of any number of discrete random variables from marginal distributions.
- Our approach only uses **two-dimensional marginals**, which naturally has **reduced-sample complexity** and **computational burden**.
- We showed that under certain conditions, the recoverability of joint PMF from pairwise marginals can be **provably guaranteed**.
- We proposed a **coupled NMF formulation** as the optimization surrogate for this task, and employed a **Gram-Schmitt-like scalable algorithm as its initializa-tion**.

- We proposed a **new framework for recovering joint PMF** of any number of discrete random variables from marginal distributions.
- Our approach only uses **two-dimensional marginals**, which naturally has **reduced-sample complexity** and **computational burden**.
- We showed that under certain conditions, the recoverability of joint PMF from pairwise marginals can be **provably guaranteed**.
- We proposed a **coupled NMF formulation** as the optimization surrogate for this task, and employed a **Gram-Schmitt-like scalable algorithm as its initializa-tion**.
- We showed that the initialization method is **effective even under the finitesample** case and can **empirically enhance performance of an EM algorithm**.

Thank You

Back up Slides

Coupled Tensor Decomposition

- Kargas et al. showed if $F \leq \frac{(\lfloor \frac{N}{3} \rfloor I + 1)^2}{16}$, where $I = I_1 = \ldots = I_N$, recoverability of the joint PMF can be guaranteed almost surely, if A_n 's follow any joint absolutely continuous distribution [Kargas et al., 2018].
- To estimate the A_n 's and λ , the following estimator was constructed:

$$\begin{array}{l} \underset{\{\boldsymbol{A}_k\}_{k=1}^K, \boldsymbol{\lambda}}{\text{minimize}} \sum_{\ell=1}^K \sum_{m=\ell+1}^K \sum_{n=m+1}^K \left\| \underline{\boldsymbol{X}}_{\ell,m,n} - [\![\boldsymbol{\lambda}, \boldsymbol{A}_\ell, \boldsymbol{A}_m, \boldsymbol{A}_n]\!] \right\|_F^2 \\ \text{subject to } \mathbf{1}^\top \boldsymbol{A}_k = \mathbf{1}^\top, \ \boldsymbol{A}_k \geq \mathbf{0}, \ \forall k \\ \mathbf{1}^\top \boldsymbol{\lambda} = 1, \ \boldsymbol{\lambda} \geq \mathbf{0}. \end{array}$$

• An *alternating least squares* (ALS) based algorithm was proposed to handle the above.

• Note that the constraints are added because the columns of A_n are conditional PMFs and λ is the PMF of the latent variable

Pairwise Approach - Main Hurdles

• Identifiability

- A natural thought to handle the identifiability problem of $X_{jk} = A_j D(\lambda) A_k^{\top}$ would be to employ **NMF** (nonnegative matrix factorization) tools, since the latent factors are all nonnegative.

• High rank

- The uniqueness of NMF models holds only if $F \leq \min\{I_j, I_k\}$ for $X_{jk} = A_j D(\lambda) A_k^{\top} \in \mathbb{R}^{I_j \times I_k}$.
- Note that F is the inner dimension of $A_j \in \mathbb{R}^{I_j \times F}, A_k \in \mathbb{R}^{I_k \times F}$ and the dimension of $D(\lambda) \in \mathbb{R}^{F \times F}$.
- F could be much larger than the I_j 's. i.e., $F \gg \min\{I_j, I_k\}$.

Pairwise Approach - Main Hurdles

• Identifiability

- A natural thought to handle the identifiability problem of $X_{jk} = A_j D(\lambda) A_k^{\top}$ would be to employ **NMF** (nonnegative matrix factorization) tools, since the latent factors are all nonnegative.

• High rank

- The uniqueness of NMF models holds only if $F \leq \min\{I_j, I_k\}$ for $X_{jk} = A_j D(\lambda) A_k^{\top} \in \mathbb{R}^{I_j \times I_k}$.
- Note that F is the inner dimension of $A_j \in \mathbb{R}^{I_j \times F}, A_k \in \mathbb{R}^{I_k \times F}$ and the dimension of $D(\lambda) \in \mathbb{R}^{F \times F}$.
- F could be much larger than the I_j 's. i.e., $F \gg \min\{I_j, I_k\}$.

This means that we have to judiciously use the available NMF results to argue for joint PMF recoverability.

Synthetic Data Simulations

- We consider N = 10 random variables with *n*-th variable taking *I* discrete values.
- The rank F is fixed to be 5.
- The columns of the conditional PMF matrices (factor matrices) $A_n \in \mathbb{R}^{I_n \times F}$ and the prior probability vector $\lambda \in \mathbb{R}^F$ are generated using dirichlet distribution with parameter $\alpha = \mathbf{1} \in \mathbb{R}^F$.
- We assume that the pairwise marginals of the random variables X_{jk} 's are available such that $X_{jk} = A_j D(\lambda) A_k^{\mathsf{T}}$ for all $j, k \in \{1, \ldots, N\}, j \neq k$.
- We run the experiment for different values of I ranging from 5 to 25.
- For each *I*, we run 10 Monte Carlo simulations by randomly generating the factor matrices *A_n* and *λ*.

Figure 1: MSE for N = 10, F = 5 with different values of I

Joint PMF Learning Using Third Order Marginals

- Direct CPD of \underline{X} is not possible since estimating \underline{X} is difficult. However, estimating the joint PMF of a subset of random variables can be possible.
- Suppose third-order marginals are available $\Pr(i_j, i_k, i_\ell)$, which can be expressed as [Kargas et al., 2018]

$$\Pr(i_j, i_k, i_\ell) = \sum_{f=1}^F \Pr(f) \Pr(i_j | f) \Pr(i_k | f) \Pr(i_\ell | f).$$

- Let $\underline{X}_{jk\ell}(i_j, i_k, i_\ell) = \mathsf{Pr}(i_j, i_k, i_\ell)$. Then, we have $\underline{X}_{jk\ell} = \llbracket \lambda, A_j, A_k, A_\ell \rrbracket$,
- If the $\underline{X}_{jk\ell}$'s admit essentially unique CPD, then A_n 's and λ can be identified from the marginals.