Deep Learning From Crowdsourced Labels: Coupled Cross-Entropy Minimization, Identifiability, and Regularization

Shahana Ibrahim, Tri Nguyen, Xiao Fu

ICLR 2023, Virtual Talk

Oregon State University

Labeled Data

One of the pillars of AI revolution is massive amount of labeled data

Amazon team taps millions of Alexa interactions to reduce NLP error rate

KYLE WIGGERS @KYLE_L_WIGGERS JANUARY 22, 2019 6:59 AM

Amazon VP of devices David Limp at a September 2018 event at Amazon headquarters in Seattle, Washington. Image Credit: Khari Johnson / VentureBeat

LAION-5B: A NEW ERA OF OPEN LARGE-SCALE MULTI-MODAL DATASETS

by: Romain Beaumont, 31 Mar, 2022

We present a dataset of 5,85 billion CLIP-filtered image-text pairs, 14x bigger than LAION-400M, previously the biggest openly accessible image-text dataset in the world - see also our <u>NeurIPS2022 paper</u>

Authors: Christoph Schuhmann, Richard Vencu, Romain Beaumont, Theo Coombes, Cade Gordon, Aarush Katta, Robert Kaczmarczyk, Jenia Jitsev

https://laion.ai/blog/laion-5b/

Crowdsourcing – Using Wisdom of the Crowd

Each data item is labeled by multiple, often non-expert, annotators

Noisy & Incomplete

End-To-End Learning for Crowdsourced Labels

Noisy Label Generation Model

$$\begin{aligned} \mathsf{Pr}(\widehat{y}_{n}^{(m)} = k | \boldsymbol{x}_{n}) &= \sum_{k'=1}^{K} \mathsf{Pr}(\widehat{y}_{n}^{(m)} = k | \boldsymbol{y}_{n} = k') \mathsf{Pr}(\boldsymbol{y}_{n} = k' | \boldsymbol{x}_{n}) \\ \end{aligned}$$

$$\begin{aligned} \mathsf{Prob. Of } m \mathsf{th} \\ annotator's \\ \mathsf{response given } \boldsymbol{x}_{n} \end{aligned}$$

$$\begin{aligned} \mathsf{Confusion} \\ \mathsf{Matrix} \\ \boldsymbol{A}_{m} \end{aligned}$$

$$\begin{aligned} \mathsf{True label} \\ \mathsf{predictor} \\ \boldsymbol{A}_{m} \end{aligned}$$

$$\begin{aligned} \mathsf{f}(\boldsymbol{x}_{n}) \\ \boldsymbol{f}(\boldsymbol{x}_{n}) \\ \boldsymbol{p}_{n}^{(m)} &= \boldsymbol{A}_{m} \boldsymbol{f}(\boldsymbol{x}_{n}), \forall m, n \\ \widehat{y}_{n}^{(m)} \sim \mathsf{categorical}(\boldsymbol{p}_{n}^{(m)}) \\ \end{aligned}$$

$$\begin{aligned} \mathsf{Goal : learn } \boldsymbol{f} \text{ and } \boldsymbol{A}_{m}, \forall m \end{aligned}$$

Coupled Cross Entropy Minimization (CCEM)

The most popular E2E learning criterion [Rodrigues & Pereira, 2018]

Can CCEM learn the true label predictor and the true annotator confusions?

F. Rodrigues and F. Pereira. "Deep learning from crowds". Proceedings of the AAAI Conference on Artificial Intelligence, 2018.

Analysis Result: CCEM correctly learns the true confusions and the true classifier,

under the assumptions

- **1** Anchor point condition
- **2** Class expert condition

For each class, there is a data sample belonging to that class with prob. close to 1 For each class, there is an expert which can predict that class correctly with prob. close to 1

Often, its hard to hold the two conditions together

Proposed Learning Criteria

If we have more data, but no experts to label

 $\begin{array}{l} \textbf{GeoCrowdNet}(\textbf{F}) \\ \text{minimize} \quad \frac{1}{|\mathcal{S}|} \sum_{(m,n) \in \mathcal{S}} \mathsf{CE}(\textbf{A}_m \textbf{f}(\textbf{x}_n), \widehat{y}_n^{(m)}) - \lambda \log \det \textbf{F} \textbf{F}^\top \\ \text{subject to} \quad \textbf{f} \in \mathcal{F}, \ \textbf{A}_m \in \mathcal{A}, \ \forall m. \end{array}$

Proposed Learning Criteria

If we have less data, but there are experts to label

 $\begin{array}{l} \textbf{GeoCrowdNet}(\textbf{W}) \\ & \underset{f,\{\textbf{A}_m\}}{\text{minimize}} \quad \frac{1}{|\mathcal{S}|} \sum_{(m,n) \in \mathcal{S}} \mathsf{CE}(\textbf{A}_m \boldsymbol{f}(\boldsymbol{x}_n), \widehat{y}_n^{(m)}) - \overleftarrow{\lambda} \log \det \boldsymbol{W}^\top \boldsymbol{W} \\ & \text{subject to} \quad \boldsymbol{f} \in \mathcal{F}, \ \boldsymbol{A}_m \in \mathcal{A}, \ \forall m. \end{array}$

Empirical Results

Less data with experts

Empirical Results

Noisy labels from amazon

workers

The criterion designed for ``no experts case" shows edge in practice

Key Takeaways

End-To-End Approach

- Established deeper understanding to the challenging E2E learning problem
- Designed learning criteria with enhanced performance under practical scenarios,
 e.g., no expert annotators

Thank You