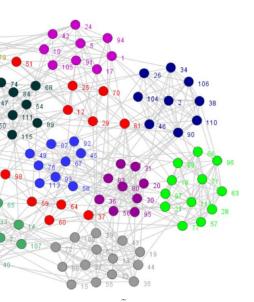


Graph Clustering (GC)

 Graph Clustering (GC) is a core analysis technique used for network data: Social Networks, Ecological Networks, Transportation Networks, Brain Networks etc. Real networks are often available with partial observation of its edges due to: Massive Data, Cost, Security/Privacy
Existing Work with Provable Guara
 A number of works [Korlakai Vinayak et al., 2014; Korlakai Vinay Chen et al., 2014], which proposed GC under partial edge obse single membership identification the entities often admit mixed membership in real-world networks random query based edge acquisition scheme may not be easy to implement in some applications; e.g., in field survey hidden or intentionally removed edges convex optimization based problem formulation hard to scale up for real-world large graphs
We aim to design a systematic edge query scheme for m identification via a lightweight algorithm with prova
Mixed Membership Model
 The nth entity belongs to kth cluster with prob. m_{kn} z^K_{k=1} m_{k,n} = 1, m_{k,n} ≥ 0. m_n = [m_{1,n},,m_{K,n}]^T is called as the membership vector of n. M = [m₁,,m_N] ∈ ℝ^{K×N} is called as the membership matrix. B ∈ ℝ^{K×K} is cluster-cluster interaction matrix.
► The edges of the graph are represented using adjacency matrix $A(i, j) \sim \text{Bernoulli} (P(i, j)), P = M^{\top}BM, 1^{\top}M$
Proposed Systematic Edge Que
$\mathcal{S}_{1} \cup \dots \cup \mathcal{S}_{L} = \{1, \dots, N\}$ $\mathcal{S}_{\ell} \cap \mathcal{S}_{m} = \emptyset, \ \forall \ell \neq m$
Adjacency Submatrix between \mathcal{S}_ℓ and $\mathcal{S}_m \Longrightarrow A_\ell$
Edge Query Principle (EQP) • For every $\ell \in [L]$, $K \leq S_{\ell} $ holds. Let $m_r \in [L]$ and $\{\ell_r\}_{r=1}^{L}$ • For every ℓ_r , there exists a pair of indices m_r and ℓ_{r+1} where the edges from the blocks A_{ℓ_r,m_r} and A_{ℓ_{r+1},m_r} are queried.
ICASSP 2021

Learning Mixed Membership from Adjacency Graph via Systematic Edge Query: Identifiability and Algorithm [Poster ID : 3972] Shahana Ibrahim, Xiao Fu

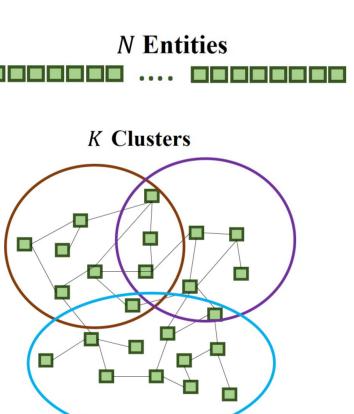
Algorithm Design for Learning M under EQP



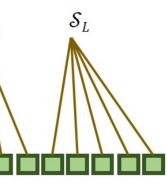
antees

- ayak and Hassibi, 2016; ervation, features
- eys and in networks with

mixed membership able guarantees.

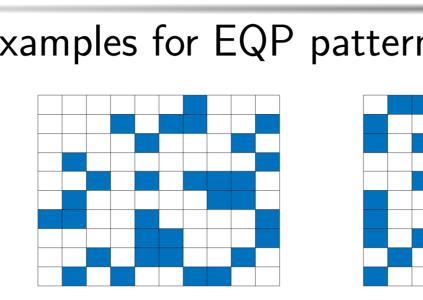


- natrix $A \in \{0, 1\}^{N \times N}$: $oldsymbol{I} = oldsymbol{1}^+, \quad oldsymbol{M} \geq oldsymbol{0}.$
- ery



 $oldsymbol{A}_{\ell,m} \in \mathbb{R}^{|\mathcal{S}_\ell| imes |\mathcal{S}_m|}$





Step 1: Estimate $U \in \mathbb{R}^{N \times K}$ such that $range(U) = range(M^{\top})$ Consider L = 3 and $A_{\ell,m} = P_{\ell,m} = M_{\ell}^{\top} B M_m$: $P_{1,2} = M_1^{ op} B M_2 , \ P_{2,2} = M_2^{ op} B M_2 ,$ $P_{2,1} = M_2^{\top} B M_1 , P_{3,1} = M_3^{\top} B M_1 .$

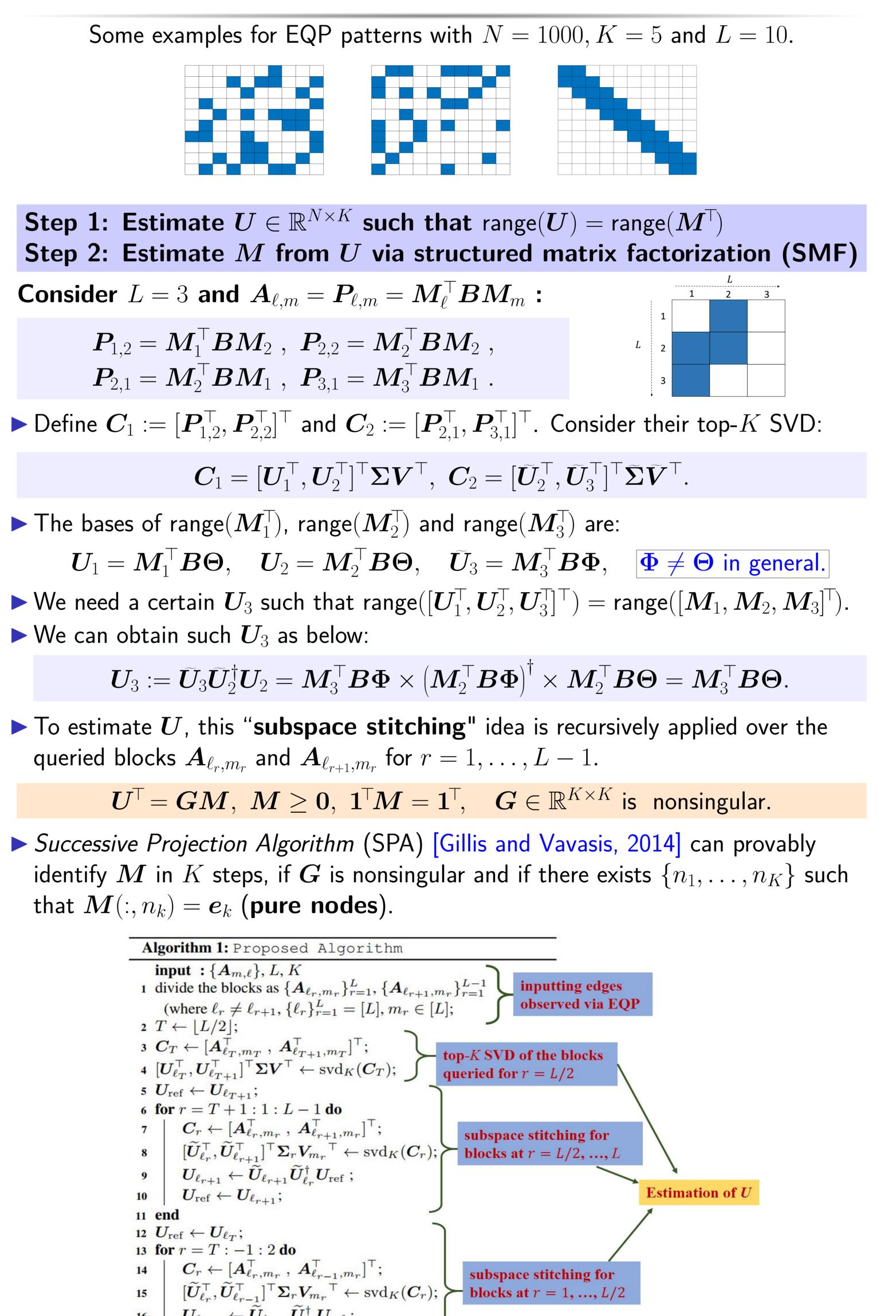
- \blacktriangleright The bases of range (M_1^T) , range (M_2^T) and range (M_3^T) are:
- \blacktriangleright We can obtain such U_3 as below:

queried blocks A_{ℓ_r,m_r} and A_{ℓ_{r+1},m_r} for $r = 1, \ldots, L-1$.

that $M(:, n_k) = e_k$ (pure nodes).

Algorithm 1: Proposed Algorithm	
input : $\{A_{m,\ell}\}, L, K$	
1 divide the blocks as $\{A_{\ell_r,m_r}\}_{r=1}^L, \{A_{\ell_{r+1},m_r}\}_{r=1}^L$	-1 inputting edges
(where $\ell_r \neq \ell_{r+1}, \{\ell_r\}_{r=1}^L = [L], m_r \in [L];$	observed via EQF
2 $T \leftarrow L/2 ;$	
3 $C_T \leftarrow [A_{\ell_T,m_T}^{\top}, A_{\ell_T+1,m_T}^{\top}]^{\top};$ top-	
[TTT TT]]TTTT] [TTTT]	<i>K</i> SVD of the blocks ried for $r = L/2$
5 $U_{\text{ref}} \leftarrow U_{\ell_{T+1}};$	
6 for $r = T + 1 : 1 : L - 1$ do	
7 $C_r \leftarrow [\mathbf{A}_{\ell_r,m_r}^{\top}, \mathbf{A}_{\ell_{r+1},m_r}^{\top}]^{\top};$	ubspace stitching for
8 $[\widetilde{U}_{\ell_r}^{\top}, \widetilde{U}_{\ell_{r+1}}^{\top}]^{\top} \Sigma_r V_{m_r}^{\top} \leftarrow \operatorname{svd}_K(C_r); \succ$	blocks at $r = L/2,, L$
9 $oldsymbol{U}_{\ell_{r+1}} \leftarrow \widetilde{oldsymbol{U}}_{\ell_{r+1}} \widetilde{oldsymbol{U}}_{\ell_r}^\dagger oldsymbol{U}_{ ext{ref}}$;	
10 $U_{\mathrm{ref}} \leftarrow U_{\ell_{r+1}};$	
11 end	
12 $U_{\text{ref}} \leftarrow U_{\ell_T};$	
13 for $r = T : -1 : 2$ do	/
14 $C_r \leftarrow [A_{\ell_r,m_r}^{\top}, A_{\ell_{r-1},m_r}^{\top}]^{\top};$	subspace stitching for
15 $[\widetilde{U}_{\ell_r}^{\top}, \widetilde{U}_{\ell_{r-1}}^{\top}]^{\top} \Sigma_r V_{m_r}^{\top} \leftarrow \operatorname{svd}_K(C_r);$	blocks at $r = 1,, L/2$
16 $U_{\ell_{r-1}} \leftarrow \widetilde{U}_{\ell_{r-1}} \widetilde{U}_{\ell_r}^{\dagger} U_{\mathrm{ref}};$	
17 $U_{\mathrm{ref}} \leftarrow U_{\ell_{r-1}};$	
18 end	
19 $\widehat{oldsymbol{U}} \leftarrow \left[oldsymbol{U}_1^{ op}, \dots, oldsymbol{U}_L^{ op} ight]^{ op};$	
20 apply SPA on \widehat{U} to estimate \widehat{M} .	Estimation of <i>M</i> from <i>U</i>
output: Estimated membership matrix \widehat{M} .	

School of EECS, Oregon State University, Corvallis, OR, USA



Assume that $m{A}_{\ell,m} = m{P}_{\ell,m} = m{M}_{\ell}^{ op} m{B} m{M}_m \in \mathbb{R}^{|\mathcal{S}_\ell| imes |\mathcal{S}_m|}$ holds true for all $\ell, m \in \mathbb{R}^{|\mathcal{S}_\ell| imes |\mathcal{S}_m|}$ [L] and rank(M) = rank(B) = K. Suppose that the $A_{\ell,m}$'s are queried according to the proposed EQP. Then, the output $ar{U}$ by Algorithm 1 satisfies $range(\hat{U}) = range(M^+).$

Proposition 2: (Subspace Identifiability - Binary Observation Case)

Let $\rho := \max_{i,j} \mathbf{P}(i,j)$ be the maximal entry of \mathbf{P} . Suppose that $\rho = 1$ $\Omega(L\log(N/L)/N)$ and $L = O(\rho N/d)$ where d is the maximal degree of all the nodes. Also assume that $N = \Omega\left(\max\left(L^2, \frac{(K\gamma^2)^L \rho \kappa^2(B)}{\sigma_{\min}^2(B)}\right)\right)$. Then, the output \hat{U} satisfies the following with probability of at least $1 - O(L^2/N)$:

Larger L makes the error bound looser, but larger L means that only fewer queries need to be made, and thus less resource consuming.

 Synthetic Date Baselines: GeoN Parameters: K 	IMF <mark>[Mao e</mark>	et al., 2017	-	-	t al., 2017]		
Graph	Ideal Case	e (A = F	?) E	Binary Observation Case			
Size	Prop	osed	Pro	Proposed		CD-MVSI	
\overline{N}	D	ist	Dist	MSE	MSE	MSE	
1×10^4	7.34×	$\times 10^{-13}$	0.342	0.0475	0.0554	0.0839	
2×10^4	2.80×	$\times 10^{-13}$	0.209	0.0198	0.0386	0.0943	
4×10^4	$1.22 \times$	$\times 10^{-13}$	0.194	0.0123	0.0341	0.0955	
8×10^4	1.12 >	$\times 10^{-13}$	0.101	0.0066	0.0261	0.0924	
Real Data Experiment - Microsoft Academic Graph:							
► MAG1 ($N = 37680, K = 3$); MAG2 ($N = 19457, K = 3$); $L = 10$							
Datasets	Proposed		Geo	GeoNMF		CD-MVSI	
	Avg. SRC	Time(s.)	Avg. SRC	Time(s.)) Avg. SRO	C Time(s.)	
MAG1	0.125	0.26	0.122	1.79	0.089	0.59	
MAG2	0.441	0.23	0.240	4.66	0.249	0.53	

Shahana Ibrahim < ibrahish@oregonstate.edu>

Identifiability Results

Proposition 1: (Subspace Identifiability - Ideal Case)

$$\|\widehat{\boldsymbol{U}} - \boldsymbol{U}\boldsymbol{O}\|_{\mathrm{F}} = O\left[\frac{(K\gamma^2)^{L/2}\kappa(\boldsymbol{B})\sqrt{\rho}}{\sigma_{\min}(\boldsymbol{B})\sqrt{N/L}}\right]$$

where $O \in \mathbb{R}^{K \times K}$ is an orthogonal matrix.

Experiment Results

References

Xueyu Mao, Purnamrita Sarkar, and Deepayan Chakrabarti. On mixed memberships and symmetric nonnegative matrix factorizations. In International Conference on Machine Learning, pages 2324-2333, 2017. Kejun Huang and Xiao Fu. Detecting overlapping and correlated communities without pure nodes: Identifiability and algorithm. In International Conference on Machine Learning, pages 2859-2868, 2019.