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Graph Clustering (GC)

• Graph Clustering (GC) is a core analysis technique frequently applied in various
network data:

� Social Networks

� Ecological Networks

� Transportation Networks

� Protein-protein Interaction
Networks

� Brain Networks

[Source : [Zhang et al., 2007]]
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GC under Partial Observation
• Real networks are often available with partial observation of its edges due to:

– [Massive Data] e.g., billions of edges in Facebook or Twitter follower-followee
network.

– [Cost] e.g., high cost for ecological/biological network data acquisition.
– [Security/Privacy] e.g., intentionally removed or hidden edges in terrorist

networks/radical group networks.

[Sources : https://associationsnow.com, https://science.sciencemag.org]
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Existing Work with Provable Guarantees

A number of works [Korlakai Vinayak et al., 2014; Korlakai Vinayak and Hassibi,
2016; Chen et al., 2014], which proposed GC under partial edge observation with
provable guarantees, features

� single membership identification

– the entities often admit mixed membership in real-world networks

� random query based edge acquisition scheme

– may not be easy to implement in some applications; e.g., in field surveys and
in networks with hidden or intentionally removed edges

� convex optimization based problem formulation

– hard to scale up for real-world large graphs

We aim to design a systematic edge query scheme for mixed membership
identification via a lightweight algorithm with provable guarantees.
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Mixed Membership Model
• The nth entity belongs to kth clus-

ter with prob. mkn

–
∑K
k=1 mk,n = 1, mk,n ≥ 0.

• mn = [m1,n, . . . ,mK,n]
> is called

as the membership vector of n.

• M = [m1, . . . ,mN ] ∈ RK×N is
called as the membership matrix.

• B ∈ RK×K is cluster-cluster in-
teraction matrix.

– B(p, q) denotes the prob. that
cluster p connects with cluster q.

If all mn’s are unit vectors (single cluster membership), it is the so-called the stochastic block model

(SBM) [Snijders and Nowicki, 1997].
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Mixed Membership Model
• The edges of the graph are represented using adjacency matrix A ∈ {0, 1}N×N :

A(i, j) ∼ Bernoulli (P (i, j)) , P = M>BM , 1>M = 1>, M ≥ 0.

• The model is reminiscent of the mixed membership stochastic block (MMSB)
model in overlapped community detection [Airoldi et al., 2008; Mao et al., 2017].
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Proposed Systematic Edge Query

S1 ∪ · · · ∪ SL = {1, . . . , N}
S` ∩ Sm = ∅, ∀` 6= m

Adjacency Submatrix between S` and Sm =⇒ A`,m ∈ R|S`|×|Sm|

Edge Query Principle (EQP)

• For every ` ∈ [L], K ≤ |S`| holds. Let mr ∈ [L] and {`r}Lr=1 = [L] .

• For every `r, there exists a pair of indices mr and `r+1 where `r+1 6= `r such

that the edges from the blocks A`r,mr and A`r+1,mr are queried .
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EQP Patterns

Some patterns for A following EQP with N = 1000,K = 5 and L = 10.

Goal : Learn M by observing A via EQP

Algorithm Design:
Step 1: Estimate U ∈ RN×K such that range(U) = range(M>)
Step 2: Estimate M from U via structured matrix factorization (SMF)
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Subspace Estimation via Block Subspace Stitching
A toy example with L = 3 and the ideal case
A`,m = P `,m = M>

` BMm :

P 1,2 = M>
1 BM2 , P 2,2 = M>

2 BM2 ,

P 2,1 = M>
2 BM1 , P 3,1 = M>

3 BM1 .

𝐿𝐿
1 2 3

1

2

3

𝐿𝐿

• Define C1 := [P>1,2,P
>
2,2]
> and C2 := [P>2,1,P

>
3,1]
>. Consider their top-K SVD:

C1 = [U>1 ,U
>
2 ]
>ΣV >, C2 = [Ũ

>
2 , Ũ

>
3 ]
>Σ̃Ṽ

>
.

• The bases of range(M>1), range(M>2) and range(M>3) are:

U1 = M>
1 BΘ, U2 = M>

2 BΘ, Ũ3 = M>
3 BΦ, Φ 6= Θ in general.
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Subspace Estimation via Block Subspace Stitching

• Our goal is to get a certain U3 such that the bases
can be “stitch”ed to have

range([U>1,U
>
2,U

>
3]
>︸ ︷︷ ︸

U

) = range([M1,M2,M3]
>︸ ︷︷ ︸

M>

).

𝐿𝐿
1 2 3

1

2

3

𝐿𝐿

• We can obtain such U3 as below:

U3 := Ũ3Ũ
†
2U2 = M>

3 BΦ×
(
M>

2 BΦ
)† ×M>

2 BΘ = M>
3 BΘ.

• This “subspace stitching” idea is recursively applied over the queried blocks
A`r,mr and A`r+1,mr for r = 1, . . . , L− 1.
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Proposed Algorithm
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Proposition 1: (Subspace Identifiability - Ideal Case)

Assume that
A`,m = P `,m = M>

` BMm ∈ R|S`|×|Sm|

holds true for all `,m ∈ [L] and rank(M) = rank(B) = K. Suppose that

the A`,m’s are queried according to the proposed EQP. Then, the output Û by
Algorithm 1 satisfies

range(Û) = range(M>).

U>= GM , M ≥ 0, 1>M = 1>, G ∈ RK×K is nonsingular.

• Algorithm 1 employs successive projection algorithm (SPA) [Gillis and Vavasis,
2014] to identify M from U .

• SPA can provably identify M in K steps, if G is nonsingular and if there exists
{n1, . . . , nK} such that M(:, nk) = ek (pure nodes).
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Proposition 2: (Subspace Identifiability - Binary Observation Case)

Let ρ := maxi,j P (i, j) be the maximal entry of P . Suppose that ρ = Ω(L log(N/L)/N)

and L = O(ρN/d) where d is the maximal degree of all the nodes. Also assume that

N = Ω

(
max

(
L

2
,
(Kγ2)Lρκ2(B)

σ2
min(B)

))
.

Then, the output Û by Algorithm 1 satisfies the following with probability of at least

1−O(L2/N):

‖Û −UO‖F = O

(
(Kγ2)L/2κ(B)

√
ρ

σmin(B)
√
N/L

)
,

where U is an orthogonal basis of range(M>) and O ∈ RK×K is an orthogonal matrix.

Larger L makes the error bound looser, but larger L means that only fewer
queries need to be made, and thus less resource consuming.
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Synthetic Data Experiments
• The membership vectors mn are drawn from the

Dirichlet distribution with parameters being (1/K)1.

• The entries of matrix B are drawn from [0, 1] uni-
formly at random and is made diagonally dominant.

• Fixed L = 10 and K = 5.

• We employ two state-of-the-art mixed membership learning algorithms, namely,
GeoNMF [Mao et al., 2017] and CD-MVSI [Huang and Fu, 2019] as baselines

Graph
Size

Ideal Case (A = P ) Binary Observation Case (A(i, j) ∼ Bernoulli (P (i, j)))
Proposed Proposed GeoNMF CD-MVSI

N Subspace Distance Subspace Distance MSE MSE MSE
1× 104 7.34×10−13 0.342 0.0475 0.0554 0.0839
2× 104 2.80×10−13 0.209 0.0198 0.0386 0.0943
4× 104 1.22×10−13 0.194 0.0123 0.0341 0.0955
8× 104 1.12 ×10−13 0.101 0.0066 0.0261 0.0924
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Real Data Experiments - Microsoft Academic Graph (MAG)

• The entities represent the authors of
research papers published in 3 different
fields.

• The diagonal query pattern is chosen.

• The averaged Spearman’s rank corre-
lation coefficient (SRC) is used to eval-
uate the methods:

– The SRC takes values between −1
and 1.

– SRC is high if the ranking of the
entries in two vectors are similar.

[Illustration of MAG Data, Source : https://www.cwts.nl]
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Real Data Experiments

Table 1: Averaged SRC and runtime in seconds for MAG1 (N = 37680,K = 3) and
MAG2 (N = 19457,K = 3) fixing L = 10.

Datasets Proposed GeoNMF CD-MVSI

SRC Time(s.) SRC Time(s.) SRC Time(s.)
MAG1 0.125 0.26 0.122 1.79 0.089 0.59
MAG2 0.441 0.23 0.240 4.66 0.249 0.53

Table 2: Clustering accuracy (%) of MAG2. N = 19457, K = 3.

Alorithms L = 10 L = 25 L = 50 L = 75 L = 100

Proposed 78.70 77.19 67.81 61.85 56.98
GeoNMF 58.16 57.87 56.88 52.68 52.33

CD-MVSI 53.45 21.82 14.57 13.53 11.71
SC-Norm 64.80 67.29 59.80 52.70 55.90
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Summary
• Proposed a novel framework that enables provable graph clustering with

partially observed edges.

• The highlights of the proposed framework are:

� systematic edge query scheme useful for
some important applications

� lightweight algorithm based on truncated
SVD

� mixed membership learning of the entities
with provable guarantees

� promising performance on synthetic and
real data experiments
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Thank You!!
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