Learning Mixed Membership from Adjacency Graph via Systematic Edge Query: Identifiability and Algorithm

Shahana Ibrahim, Xiao Fu

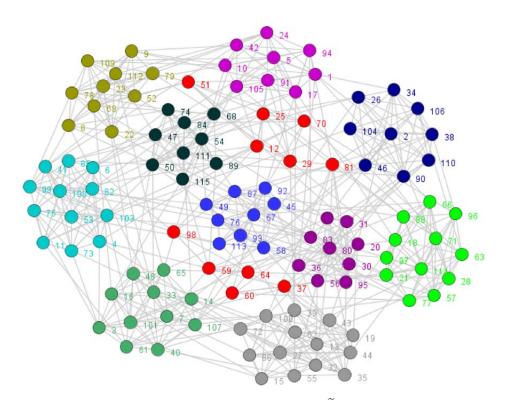
School of EECS Oregon State University, Corvallis

> IEEE ICASSP 2021 June 6-11, 2021

Graph Clustering (GC)

• *Graph Clustering (GC)* is a core analysis technique frequently applied in various network data:

- Social Networks
 Ecological Networks
- □ **Transportation Networks**
- Protein-protein Interaction Networks
- **Brain Networks**



[Source : [Zhang et al., 2007]]

GC under Partial Observation

- Real networks are often available with **partial observation of its edges** due to:
 - [Massive Data] e.g., billions of edges in Facebook or Twitter follower-followee network.
 - [Cost] e.g., high cost for ecological/biological network data acquisition.
 - [Security/Privacy] e.g., intentionally removed or hidden edges in terrorist networks/radical group networks.

[Sources: https://associationsnow.com, https://science.sciencemag.org]

Existing Work with Provable Guarantees

A number of works [Korlakai Vinayak et al., 2014; Korlakai Vinayak and Hassibi, 2016; Chen et al., 2014], which proposed GC under partial edge observation with provable guarantees, features

 $\hfill\square$ single membership identification

- the entities often admit mixed membership in real-world networks
- □ random query based edge acquisition scheme
 - may not be easy to implement in some applications; e.g., in field surveys and in networks with hidden or intentionally removed edges

convex optimization based problem formulation

- hard to scale up for real-world large graphs

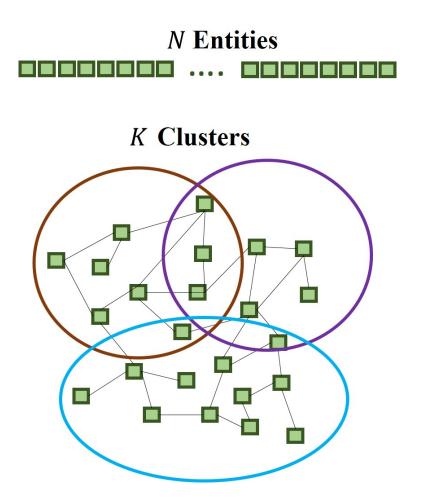
We aim to design a systematic edge query scheme for mixed membership identification via a lightweight algorithm with provable guarantees.

Mixed Membership Model

• The *n*th entity belongs to kth cluster with prob. m_{kn}

$$-\sum_{k=1}^{K} m_{k,n} = 1, \ m_{k,n} \ge 0.$$

- $\boldsymbol{m}_n = [m_{1,n}, \dots, m_{K,n}]^{\top}$ is called as the **membership vector** of n.
- $M = [m_1, \dots, m_N] \in \mathbb{R}^{K \times N}$ is called as the membership matrix.
- $\boldsymbol{B} \in \mathbb{R}^{K \times K}$ is cluster-cluster interaction matrix.
 - B(p,q) denotes the prob. that cluster p connects with cluster q.

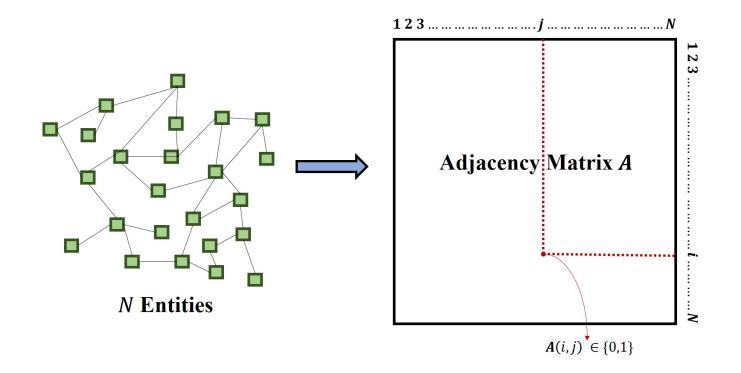


If all m_n 's are unit vectors (single cluster membership), it is the so-called the *stochastic block model* (SBM) [Snijders and Nowicki, 1997].

Mixed Membership Model

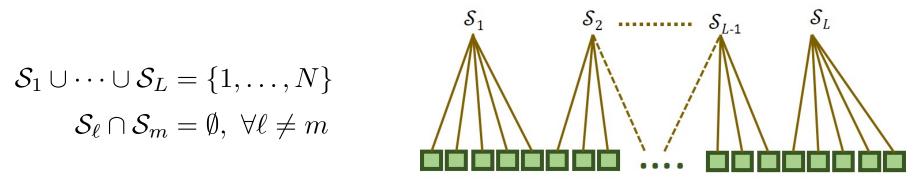
• The edges of the graph are represented using adjacency matrix $A \in \{0,1\}^{N \times N}$:

 $\boldsymbol{A}(i,j) \sim \text{Bernoulli}\left(\boldsymbol{P}(i,j)\right), \quad \boldsymbol{P} = \boldsymbol{M}^\top \boldsymbol{B} \boldsymbol{M}, \quad \boldsymbol{1}^\top \boldsymbol{M} = \boldsymbol{1}^\top, \quad \boldsymbol{M} \geq \boldsymbol{0}.$



• The model is reminiscent of the *mixed membership stochastic block* (MMSB) model in overlapped community detection [Airoldi et al., 2008; Mao et al., 2017].

Proposed Systematic Edge Query



N Entities

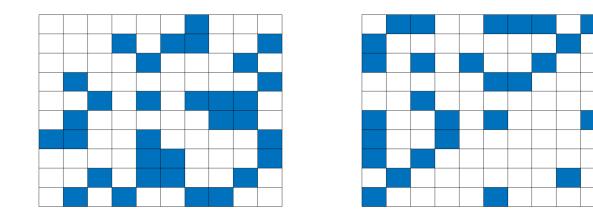
Adjacency Submatrix between \mathcal{S}_ℓ and $\mathcal{S}_m \Longrightarrow A_{\ell,m} \in \mathbb{R}^{|\mathcal{S}_\ell| imes |\mathcal{S}_m|}$

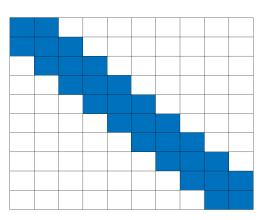
Edge Query Principle (EQP)

• For every
$$\ell \in [L]$$
, $K \leq |S_{\ell}|$ holds. Let $m_r \in [L]$ and $\{\ell_r\}_{r=1}^{L} = [L]$.
• For every ℓ_r , there exists a pair of indices m_r and ℓ_{r+1} where $\ell_{r+1} \neq \ell_r$ such that the edges from the blocks A_{ℓ_r,m_r} and A_{ℓ_{r+1},m_r} are queried.

EQP Patterns

Some patterns for A following EQP with N = 1000, K = 5 and L = 10.





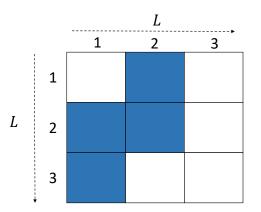
Goal : Learn M by observing A via EQP

Algorithm Design: Step 1: Estimate $U \in \mathbb{R}^{N \times K}$ such that $range(U) = range(M^{\top})$ Step 2: Estimate M from U via structured matrix factorization (SMF)

Subspace Estimation via Block Subspace Stitching

A toy example with L = 3 and the ideal case $A_{\ell,m} = P_{\ell,m} = M_{\ell}^{\top} B M_m$:

$$oldsymbol{P}_{1,2} = oldsymbol{M}_1^ op oldsymbol{B} oldsymbol{M}_2 \;, \; oldsymbol{P}_{2,2} = oldsymbol{M}_2^ op oldsymbol{B} oldsymbol{M}_2 \;, \; oldsymbol{P}_{2,1} = oldsymbol{M}_2^ op oldsymbol{B} oldsymbol{M}_1 \;, \; oldsymbol{P}_{3,1} = oldsymbol{M}_3^ op oldsymbol{B} oldsymbol{M}_1 \;.$$



• Define $C_1 := [P_{1,2}^{\top}, P_{2,2}^{\top}]^{\top}$ and $C_2 := [P_{2,1}^{\top}, P_{3,1}^{\top}]^{\top}$. Consider their top-K SVD:

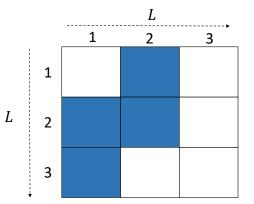
$$\boldsymbol{C}_1 = [\boldsymbol{U}_1^{\top}, \boldsymbol{U}_2^{\top}]^{\top} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}, \ \boldsymbol{C}_2 = [\widetilde{\boldsymbol{U}}_2^{\top}, \widetilde{\boldsymbol{U}}_3^{\top}]^{\top} \widetilde{\boldsymbol{\Sigma}} \widetilde{\boldsymbol{V}}^{\top}.$$

$$oldsymbol{U}_1 = oldsymbol{M}_1^ op oldsymbol{B} oldsymbol{\Theta}, \quad oldsymbol{U}_2 = oldsymbol{M}_2^ op oldsymbol{B} oldsymbol{\Theta}, \quad oldsymbol{\widetilde{U}}_3 = oldsymbol{M}_3^ op oldsymbol{B} oldsymbol{\Phi}, \quad oldsymbol{\Phi}
eq oldsymbol{\Theta}$$
 in general.

Subspace Estimation via Block Subspace Stitching

• Our goal is to get a certain $oldsymbol{U}_3$ such that the bases can be "stitch" ed to have

$$\mathsf{range}(\underbrace{[\boldsymbol{U}_1^\top,\boldsymbol{U}_2^\top,\boldsymbol{U}_3^\top]^\top}_{\boldsymbol{U}}) = \mathsf{range}(\underbrace{[\boldsymbol{M}_1,\boldsymbol{M}_2,\boldsymbol{M}_3]^\top}_{\boldsymbol{M}^\top}).$$

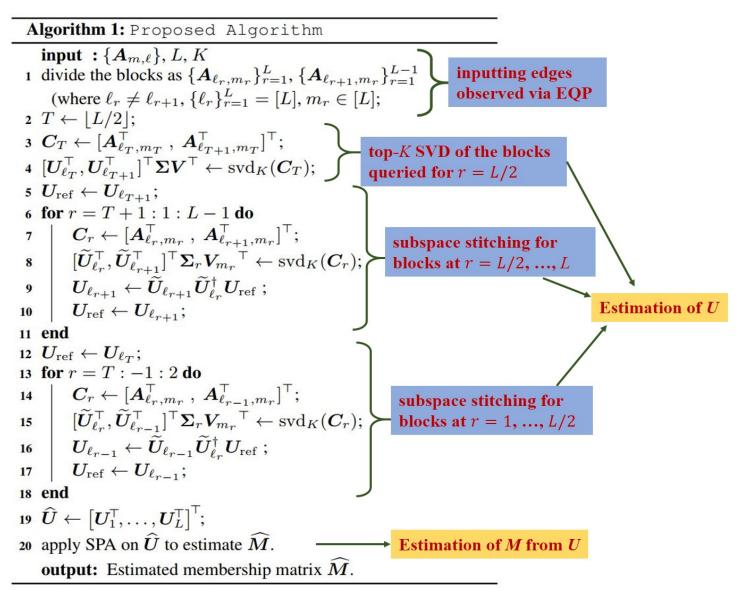


• We can obtain such U_3 as below:

$$oldsymbol{U}_3 := oldsymbol{\widetilde{U}}_3 oldsymbol{\widetilde{U}}_2^\dagger oldsymbol{U}_2 = oldsymbol{M}_3^ op oldsymbol{B} oldsymbol{\Phi} imes oldsymbol{\left(M_2^ op oldsymbol{B} oldsymbol{\Phi}
ight)^\dagger} imes oldsymbol{M}_2^ op oldsymbol{B} oldsymbol{\Theta} = oldsymbol{M}_3^ op oldsymbol{B} oldsymbol{\Theta}.$$

• This "subspace stitching" idea is recursively applied over the queried blocks A_{ℓ_r,m_r} and A_{ℓ_{r+1},m_r} for $r = 1, \ldots, L-1$.

Proposed Algorithm



Proposition 1: (Subspace Identifiability - Ideal Case)

Assume that

$$oldsymbol{A}_{\ell,m} = oldsymbol{P}_{\ell,m} = oldsymbol{M}_{\ell}^{ op}oldsymbol{B}oldsymbol{M}_m \in \mathbb{R}^{|\mathcal{S}_{\ell}| imes |\mathcal{S}_m|}$$

holds true for all $\ell, m \in [L]$ and rank(M) = rank(B) = K. Suppose that the $A_{\ell,m}$'s are queried according to the proposed EQP. Then, the output \widehat{U} by Algorithm 1 satisfies

 $\operatorname{range}(\widehat{U}) = \operatorname{range}(M^{\top}).$

$$U^{\top} = GM, \ M \ge 0, \ \mathbf{1}^{\top}M = \mathbf{1}^{\top}, \quad G \in \mathbb{R}^{K imes K}$$
 is nonsingular.

- Algorithm 1 employs successive projection algorithm (SPA) [Gillis and Vavasis, 2014] to identify M from U.
- SPA can provably identify M in K steps, if G is nonsingular and if there exists $\{n_1, \ldots, n_K\}$ such that $M(:, n_k) = e_k$ (pure nodes).

Proposition 2: (Subspace Identifiability - Binary Observation Case)

Let $\rho := \max_{i,j} \mathbf{P}(i,j)$ be the maximal entry of \mathbf{P} . Suppose that $\rho = \Omega(L \log(N/L)/N)$ and $L = O(\rho N/d)$ where d is the maximal degree of all the nodes. Also assume that

$$N = \Omega\left(\max\left(L^2, \frac{(K\gamma^2)^L \rho \kappa^2(\boldsymbol{B})}{\sigma_{\min}^2(\boldsymbol{B})}\right)\right)$$

Then, the output \widehat{U} by Algorithm 1 satisfies the following with probability of at least $1 - O(L^2/N)$:

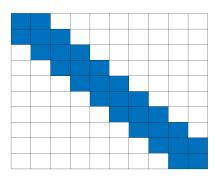
$$\|\widehat{\boldsymbol{U}} - \boldsymbol{U}\boldsymbol{O}\|_{\mathrm{F}} = O\left(\frac{(K\gamma^2)^{L/2}\kappa(\boldsymbol{B})\sqrt{\rho}}{\sigma_{\min}(\boldsymbol{B})\sqrt{N/L}}\right),$$

where U is an orthogonal basis of range (M^{\top}) and $O \in \mathbb{R}^{K \times K}$ is an orthogonal matrix.

Larger L makes the error bound looser, but larger L means that only fewer queries need to be made, and thus less resource consuming.

Synthetic Data Experiments

- The membership vectors m_n are drawn from the Dirichlet distribution with parameters being $(1/K)\mathbf{1}$.
- The entries of matrix \boldsymbol{B} are drawn from [0,1] uniformly at random and is made diagonally dominant.

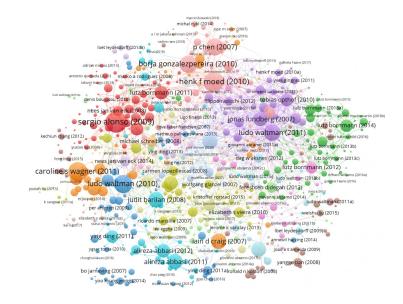


- Fixed L = 10 and K = 5.
- We employ two state-of-the-art mixed membership learning algorithms, namely, GeoNMF [Mao et al., 2017] and CD-MVSI [Huang and Fu, 2019] as baselines

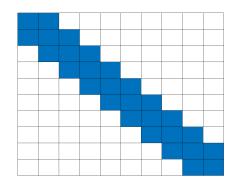
Graph	${\sf Ideal \ Case \ } (A=P)$	Binary Observation Case $(A(i,j) \sim \text{Bernoulli}(P(i,j)))$				
Size	Proposed	Proposed		GeoNMF	CD-MVSI	
\overline{N}	Subspace Distance	Subspace Distance	MSE	MSE	MSE	
1×10^4	7.34×10^{-13}	0.342	0.0475	0.0554	0.0839	
2×10^4	2.80×10^{-13}	0.209	0.0198	0.0386	0.0943	
4×10^4	1.22×10^{-13}	0.194	0.0123	0.0341	0.0955	
8×10^4	1.12×10^{-13}	0.101	0.0066	0.0261	0.0924	

Real Data Experiments - Microsoft Academic Graph (MAG)

- The entities represent the authors of research papers published in 3 different fields.
- The diagonal query pattern is chosen.
- The averaged *Spearman's rank correlation* coefficient (SRC) is used to evaluate the methods:
 - The SRC takes values between -1 and 1.
 - SRC is high if the ranking of the entries in two vectors are similar.



[Illustration of MAG Data, Source : https://www.cwts.nl]



Real Data Experiments

Table 1: Averaged SRC and runtime in seconds for MAG1 (N = 37680, K = 3) and MAG2 (N = 19457, K = 3) fixing L = 10.

Datasets	Proposed		GeoNMF		CD-MVSI	
	SRC	Time(s.)	SRC	Time(s.)	SRC	Time(s.)
MAG1	0.125	0.26	0.122	1.79	0.089	0.59
MAG2	0.441	0.23	0.240	4.66	0.249	0.53

Table 2: Clustering accuracy (%) of MAG2. N = 19457, K = 3.

Alorithms	L = 10	L = 25	L = 50	L = 75	L = 100
Proposed	78.70	77.19	67.81	61.85	56.98
GeoNMF	58.16	57.87	56.88	52.68	52.33
CD-MVSI	53.45	21.82	14.57	13.53	11.71
SC-Norm	64.80	67.29	59.80	52.70	55.90

Summary

- Proposed a novel framework that enables provable graph clustering with partially observed edges.
- The highlights of the proposed framework are:
 - □ systematic edge query scheme useful for some important applications
 - Iightweight algorithm based on truncated SVD
 - □ **mixed membership learning** of the entities with provable guarantees
 - promising performance on synthetic and real data experiments

Thank You!!

References

- Edoardo M Airoldi, David M Blei, Stephen E Fienberg, and Eric P Xing. Mixed membership stochastic blockmodels. *Journal of Machine Learning Research*, 9 (Sep):1981–2014, 2008.
- Yudong Chen, Ali Jalali, Sujay Sanghavi, and Huan Xu. Clustering partially observed graphs via convex optimization. *The Journal of Machine Learning Research*, 15 (1):2213–2238, 2014.
- N. Gillis and S.A. Vavasis. Fast and robust recursive algorithms for separable nonnegative matrix factorization. *IEEE Trans. Pattern Anal. Mach. Intell.*, 36(4): 698–714, April 2014.
- Kejun Huang and Xiao Fu. Detecting overlapping and correlated communities without pure nodes: Identifiability and algorithm. In *Proceedings of the 36th International Conference on Machine Learning*, pages 2859–2868, 2019.

- Ramya Korlakai Vinayak and Babak Hassibi. Crowdsourced clustering: Querying edges vs triangles. In *Advances in Neural Information Processing Systems 29*, pages 1316–1324. 2016.
- Ramya Korlakai Vinayak, Samet Oymak, and Babak Hassibi. Graph clustering with missing data: Convex algorithms and analysis. In *Advances in Neural Information Processing Systems 27*, pages 2996–3004, 2014.
- Xueyu Mao, Purnamrita Sarkar, and Deepayan Chakrabarti. On mixed memberships and symmetric nonnegative matrix factorizations. In *International Conference on Machine Learning*, pages 2324–2333, 2017.
- Tom Snijders and Krzysztof Nowicki. Estimation and prediction for stochastic blockmodels for graphs with latent block structure. *Journal of Classification*, 14: 75–100, 01 1997.
- Shihua Zhang, Rui-Sheng Wang, and X. Zhang. Identification of overlapping community structure in complex networks using fuzzy c-means clustering. *Physica A-statistical Mechanics and Its Applications*, 374:483–490, 2007.