Crowdsourcing via Pairwise Co-occurrences: Identifiability and Algorithms

Shahana Ibrahim ${ }^{\dagger}$, Xiao Fu^{\dagger}, Nikos Kargas ${ }^{\ddagger}$, and Kejun Huang ${ }^{\star}$

School of EECS, Oregon State University, Corvallis, OR, USA \ddagger Department of ECE, University of Minnesota, Minneapolis, MN, USA *Department of CISE, University of Florida, Gainesville, FL, USA

Data Labeling and Crowdsourcing

- Massive labeled data is a key performance booster of deep networks.
- Crowdsourcing is widely used for data labeling.

Dawid-Skene Model

- The confusion matrix $\boldsymbol{A}_{m} \in \mathbb{R}^{K \times K}$ for each annotator m and the prior probability vector $\boldsymbol{d} \in \mathbb{R}^{K}$ are the Dawid-Skene model parameters.
$\boldsymbol{A}_{m}\left(k_{m}, k\right):=\operatorname{Pr}\left(X_{m}=k_{m} \mid Y=k\right)$,
$\boldsymbol{d}(k):=\operatorname{Pr}(Y=k)$
The goal is to estimate \boldsymbol{A}_{m} for $m=1, \ldots, M$ and \boldsymbol{d}. Prior Art
- Dawid-Skene Model [Dawid \& Skene, 1979]
- Proposed expectation maximization (EM) algorithm for ML estimation

Spectral Method [Zhang et al., 2014]:

- Established identifiability using orthogonal and symmetric tensor decomposition.
- Employed third-order co-occurrences of responses; may have high sample complexity.

Pairwise Co-occurrences of Annotator Responses

- The joint PMF of any two annotator responses

$$
\begin{gathered}
\boldsymbol{R}_{m, \ell}\left(k_{m}, k_{\ell}\right)=\sum_{k=1}^{K} \underbrace{\operatorname{Pr}(Y=k)}_{\boldsymbol{d}(k)} \underbrace{\operatorname{Pr}\left(X_{m}=k_{m} \mid Y=k\right)}_{\boldsymbol{A}_{m}\left(k_{m}, k\right)} \underbrace{\operatorname{Pr}\left(X_{\ell}=k_{\ell} \mid Y=k\right)}_{\boldsymbol{A}_{\ell}\left(k_{\ell}, k\right)} \\
\Longrightarrow \boldsymbol{R}_{m, \ell}=\boldsymbol{A}_{m} \boldsymbol{D \boldsymbol { A } _ { \ell } ^ { \top } \in \mathbb { R } ^ { K \times K } , \boldsymbol { D } = \operatorname { D i a g } (\boldsymbol { d }) .}
\end{gathered}
$$

$-\boldsymbol{R}_{m, \ell}$'s can be estimated via sample averaging.
$\boldsymbol{R}_{m, \ell}$'s are second-order statistics; easier to estimate than third-order ones

Proposed Approach

- Consider an annotator m who co-labels with annotators $m_{1}, \ldots, m_{T(m)}$,

$$
\boldsymbol{Z}_{m}=\left[\boldsymbol{R}_{m, m_{1}}, \boldsymbol{R}_{m, m_{2}}, \ldots, \boldsymbol{R}_{m, m_{T(m)}}\right]=\boldsymbol{A}_{m}[\underbrace{\boldsymbol{D} \boldsymbol{A}_{m_{1}}^{\top}, \ldots, \boldsymbol{D} \boldsymbol{A}_{T(m)}^{\top}}_{\boldsymbol{U} \top}
$$

ℓ_{1}-normalize the columns of \boldsymbol{Z}_{m} to get $\boldsymbol{Z}_{m}=\boldsymbol{A}_{m} \boldsymbol{H}_{m}^{\top}$ where $\boldsymbol{H}_{m}^{\top}$ is row normalized.

- Assume that there exits an index set $\Lambda_{q}=\left\{q_{1}, \ldots, q_{K}\right\}$ such that $\boldsymbol{H}_{m}\left(\Lambda_{q},:\right)=\boldsymbol{I}_{K}$ (known as seperability) [Donoho \& Stodden, 2003]

- Estimating \boldsymbol{A}_{m} boils down to identifyting index set Λ_{q} which can be achieved by successive projection algorithm (SPA) [Araújo et al. 2001]
- Index identification via SPA is repeated for every \boldsymbol{A}_{m} (named as MultiSPA).
Model Identifiability

If each class k has an annotator who can perfectly identify class k, then $\boldsymbol{H}_{m}\left(\Lambda_{q},:\right)=\boldsymbol{I}_{K}$ can be satisfied. $\boldsymbol{e}_{1} \quad \boldsymbol{e}_{2} \quad \boldsymbol{e}_{3}$

Theorem 1: Assume that annotators m and t co-label at least S samples $\forall t \in\left\{m_{1}, \ldots, m_{T(m)}\right\}$, Also assume that the constructed \boldsymbol{Z}_{m} satisfies $\left\|\boldsymbol{Z}_{m}(:, l)\right\|_{1} \geq \eta, \forall l \in\{1, \ldots K T(m)\}$, where $\eta \in(0,1]$, Suppose that for every class index $k \in\{1, \ldots, K\}$, there exists an annotator $m_{t(k)} \in\left\{m_{1}, \ldots, m_{T(m)}\right\}$ such that $\quad \operatorname{Pr}\left(X_{m_{t(k)}}=k \mid Y=k\right) \geq(1-\epsilon) \sum_{i=1}^{K} \operatorname{Pr}\left(X_{m_{t(t)}}=k \mid Y=j\right), \epsilon \in[0,1]$
Then, if $\epsilon \leq \mathcal{O}\left(\max \left(K^{-1} \kappa^{-3}\left(\boldsymbol{A}_{m}\right), \sqrt{\ln (1 / \delta)}\left(\sigma_{\max }\left(\boldsymbol{A}_{m}\right) \sqrt{S} \eta\right)^{-1}\right)\right)$, with probability greater than 1- δ the SPA algorithm can estimate an \boldsymbol{A}_{m} from $\boldsymbol{Z}_{m}=\boldsymbol{A}_{\boldsymbol{m}} \boldsymbol{D} \boldsymbol{H}_{m}^{\top}$ with the estimation error bounded by $\mathcal{O}\left(\sqrt{K} \kappa^{2}\left(\boldsymbol{A}_{m}\right) \max \left(\sigma_{\max }\left(\boldsymbol{A}_{m}\right) \epsilon, \ln (1 / \delta)(\sqrt{S} \eta)^{-1}\right.\right.$
\boldsymbol{A}_{m}, and $\kappa\left(\boldsymbol{A}_{m}\right)$ is the condition number of \boldsymbol{A}_{m}.

- Implication: Even if there are no perfect annotators for each class, MultiSPA estimates \boldsymbol{A}_{m}.

Do we favour more annotators?
Theorem 2 :Let $\rho>0, \varepsilon>0$, and assume that the rows of $\overline{\boldsymbol{H}}_{m}$ are generated within the ($K-1$)probability simplex uniformly at random. If $\left.M \geq \Omega \frac{\varepsilon^{-2(K-1)}}{K} \log (K)\right)$, then with probability greater than or equal to $1-\rho$, there exists rows of \boldsymbol{H}_{m} indexed by $q_{1}, \ldots q_{K}$ such that

$$
\left\|\boldsymbol{H}_{m}\left(q_{k} ;\right)-\boldsymbol{e}_{k}^{\top}\right\|_{2} \leq \varepsilon, k=1, \ldots, K
$$

- Implication: If more number of annotators are available, there exists high chance for seperability condition

Enhanced Identifiability

- The model can be identified under a relaxed assumption by solvin

$$
\begin{align*}
\text { find } & \left\{\boldsymbol{A}_{m}\right\}_{m=1}^{M}, \boldsymbol{D} \tag{1a}\\
\text { subject to } & \boldsymbol{R}_{m, \ell}=\boldsymbol{A}_{m} \boldsymbol{D} \boldsymbol{A}_{\ell}^{\top}, \forall m, \ell \in\{1, \ldots, M\} \\
& \mathbf{1}^{\top} \boldsymbol{A}_{m}=\mathbf{1}^{\top}, \boldsymbol{A}_{m} \geq \mathbf{0}, \forall m, \mathbf{1}^{\top} \boldsymbol{d}=1, \boldsymbol{d} \geq \mathbf{0} . \tag{1c}
\end{align*}
$$

Theorem 3: Assume that $\operatorname{rank}(\boldsymbol{D})=\operatorname{rank}\left(\boldsymbol{A}_{m}\right)=K$ for all $m=1, \ldots, M$, and that there exist two subsets of the annotator, indexed by \mathcal{P}_{1} and \mathcal{P}_{2}, where $\mathcal{P}_{1} \cap \mathcal{P}_{2}=\emptyset$ and $\mathcal{P}_{1} \cup \mathcal{P}_{2} \subseteq\{1, \ldots, M\}$. Suppose that from \mathcal{P}_{1} and \mathcal{P}_{2} the following two matrices can be constructed:

$$
\begin{aligned}
& \tilde{\boldsymbol{R}}=\left[\begin{array}{cccc}
\boldsymbol{R}_{m_{1}, \ell_{1}} & \boldsymbol{R}_{m_{1}, \ell_{2}} & \cdots & \boldsymbol{R}_{m_{1}, \ell_{p_{2}}} \\
\vdots & \vdots & \cdots & \vdots \\
\boldsymbol{R}_{m_{1}, \ell_{1}} & \boldsymbol{R}_{m, \ell_{2}} & \cdots & \boldsymbol{R}_{2}
\end{array}\right]=
\end{aligned}
$$

Denote $\boldsymbol{H}^{(1)}=\left[\boldsymbol{A}_{m_{1},}^{\top}, \ldots, \boldsymbol{A}_{m_{p_{1}}}^{\top}\right]^{\top}, \boldsymbol{H}^{(2)}=\left[\boldsymbol{A}_{\ell_{1}}^{\top}, \ldots, \boldsymbol{A}_{\ell_{p_{2}}}^{\top}\right]^{\top}$, where $m_{t} \in \mathcal{P}_{1}$ and $\ell_{j} \in \mathcal{P}$ Furthermore, assume that both $\boldsymbol{H}^{(1)}$ and $\boldsymbol{H}^{(2)}$ are sufficiently scattered.Then, solving Proble (1) recovers \boldsymbol{A}_{m} for $m=1, \ldots, M$ and $\boldsymbol{D}=\operatorname{diag}(\boldsymbol{d})$ up to identical column permutation

- Extremely well trained annotators for each class are not required to satisfy sufficiently scattered condition

Left: Sufficiently scattered \boldsymbol{H}. Right: Separable \boldsymbol{H}

- Problem (1) is solved by a BCD algorithm with KL divergence as the fitting criterion (used MultiSPA as initialization, thus named as MultiSPA-KL) Amazon Mechanical Turk (AMT) Experiment Results

Algorithms	TREC		Bluebird		RTE		Web		Dog	
	(\%)Er	(sec) $\mathrm{T}^{\text {c }}$	e(\%)Er	r (sec)	(\%)	r (sec)		(sec)	(\%)EI	r (sec) ${ }_{\text {Time }}$
Mult ispa		${ }^{50.68}$		0.07	8.75	0.28				
MultispA-KL	29.23	536	11.1	1.94	7.12	17.06	88		48	
Nalcish		53.14	12.03	0.09	7.12	0.32	15.19	0.84		
Spectrai-Dus	29	919.9	12.03	1.97	7.12	6.40		199.92		
Tensor	N/A	N/A	12.03	2.74	N/A	N/A	N/A	N/A	17.96	
${ }^{\text {NV-Das }}$	30.02	3.20	12.03	0.02	7.25	0.07	16.02	0.28	15.86	0.04
Minnax-entropy	91.61	${ }^{352.36}$	8.33	${ }^{3.43}$	7.50	9.10	11.51	22.61	16.23	7.22
EigenRatio	43.95	1.48	27.77	0.02	9.01	0.03	N/A	N/A	N/A	N/A
kos	51.95	9.98	11.11	0.01	39.75	0.03	42.93	0.31	31.84	0.13
GhoshSVD	43.03	${ }_{11.62}$	27.71	0.01	49.12	0.03	N/A	N/A	N/	N/A
Majority Voting		N/A	21.29	N/A	10.31	N/A	26.93	N/A	17.91	N/A

- Dawid, A. P. and Skene, A. M. Maximum likelihood estimation of observer error-rates using the em algorithm. Applied statistics, pp. 20-28, 1979.
- Zhang, Y., Chen, X., Zhou, D., and Jordan, M. I. Spectral methods meet em: A provably optimal algorithm for crowdsourcing. In Advances in Neural Information Processing Systems, pp. 1260-1268, 2014.
Donoho, D. and Stodden, V. When does non-negative matrix factorization give the correct decomposition into parts? In Advances in Neural Information Processing Systems, pp 1141-1148 2004.

