

Data Labeling and Crowdsourcir

Massive labeled data is a key performance booster of deep net **Crowdsourcing** is widely used for data labeling.

Dawid-Skene Model

 \blacktriangleright The confusion matrix $A_m \in \mathbb{R}^{K imes K}$ for each annotator m a **probability vector** $\boldsymbol{d} \in \mathbb{R}^{K}$ are the Dawid-Skene model para

$$\begin{aligned} \boldsymbol{A}_m(k_m,k) &:= \Pr(X_m = k_m | Y = k), \\ \boldsymbol{d}(k) &:= \Pr(Y = k) \end{aligned}$$

The goal is to estimate A_m for m = 1, ..., M and d. **Prior Art**

Dawid-Skene Model [Dawid & Skene, 1979]: Proposed expectation maximization (EM) algorithm for ML estimation. ► Widely used, but model identifiability is unclear.

Spectral Method [Zhang et al., 2014]:

- Established identifiability using orthogonal and symmetric tensor decomposition
- Employed third-order co-occurrences of responses; may have high sample

Pairwise Co-occurrences of Annotator F

► The joint PMF of any two annotator responses,

 $\triangleright \mathbf{R}_{m,\ell}$'s can be estimated via sample averaging. $\triangleright R_{m,\ell}$'s are second-order statistics; easier to estimate than third

rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Crowdsourcing via Pairwise Co-occurrences: Identifiability and Algorithms Shahana Ibrahim[†], Xiao Fu[†], Nikos Kargas[‡], and Kejun Huang^{*} [†]School of EECS, Oregon State University, Corvallis, OR, USA [‡]Department of ECE, University of Minnesota, Minneapolis, MN, USA *Department of CISE, University of Florida, Gainesville, FL, USA

ng	Propose
tworks.	\blacktriangleright Consider an annotator m who co-labels
	$oldsymbol{Z}_m = ig[oldsymbol{R}_{m,m_1},oldsymbol{R}_{m,m_2},\ldots,oldsymbol{R}_m$
Groundtruth labels Y	
	\triangleright ℓ_1 -normalize the columns of Z_m to get normalized.
	Assume that there exits an index set A (known as seperability) [Donoho & S
ors	$\overline{\boldsymbol{H}}_m(q_1,:) = \boldsymbol{e}_1$
responses	
$\ldots, K\}$	
	$\overline{\boldsymbol{H}}_{m}(q_{2},:) = \boldsymbol{e}_{2} \qquad \qquad \overline{\boldsymbol{H}}_{m}(q_{3},:) = \boldsymbol{e}_{3}$
	Estimating A _m boils down to identifyti successive projection algorithm (S
	Index identification via SPA is repeated
	Model Ic
and the prior ameters.	If each class k has an annotator who can be satisfied. $H_m(\Lambda_q, :) = I_K \text{ can be satisfied. } e_1$
	$oldsymbol{Z}_m = oldsymbol{A}_m \underbrace{oldsymbol{D} oldsymbol{\left[} oldsymbol{A}_{m_1}^ op, \dots, oldsymbol{A}_{m_e}^ op ight.}$
	Theorem 1 : Assume that annotators m and t constructed \widehat{Z}_m satisfies $\ \widehat{Z}_m(X_m)\ = 0$. Suppose that for every class index $k \in \{1, \dots, K_m\}$
	such that $\Pr(X_{m_{t(k)}} = k Y = k) \ge (1 - \epsilon)$
position. e complexity.	Then, if $\epsilon \leq \mathcal{O}\left(\max\left(K^{-1}\kappa^{-3}(\boldsymbol{A}_m), \sqrt{\ln(1/\delta)}(\sigma_m)\right)\right)$ the SPA algorithm can estimate an $\widehat{\boldsymbol{A}}_m$ from \boldsymbol{Z} $\mathcal{O}(\sqrt{K}\kappa^2(\boldsymbol{A}_m)\max\left(\sigma_{\max}(\boldsymbol{A}_m)\epsilon, \sqrt{\ln(1/\delta)}(\sqrt{S\eta})\right)$ \boldsymbol{A}_m and $\kappa(\boldsymbol{A}_m)$ is the condition number of \boldsymbol{A}_m
Responses	Implication: Even if there are no perf
	estimates A_m . Do we favour
$X_{\ell} = k_{\ell} Y = k \rangle.$	Theorem 2 :Let $\rho > 0, \varepsilon > 0$, and assume that
$\mathbf{A}_{\ell}(k_{\ell},k)$	probability simplex uniformly at random. If $M \ge$ or equal to $1 - \rho$, there exists rows of \overline{H}_m index
	$\ oldsymbol{H}_m(q_k,:)-oldsymbol{e}_k^ op$
d-order ones.	Implication: If more number of annot for seperability condition.

ed Approach

Is with annotators
$$m_1, \ldots, m_{T(m)}$$
,
 $m_{m,m_{T(m)}} = \boldsymbol{A}_m [\underbrace{\boldsymbol{D}} \boldsymbol{A}_{m_1}^{\top}, \ldots, \underbrace{\boldsymbol{D}} \boldsymbol{A}_{T(m)}^{\top}].$
 $\underbrace{\boldsymbol{H}}_m^{\top}$

 $\mathbf{Z}_m = oldsymbol{A}_m oldsymbol{\overline{H}}_m^ op$ where $oldsymbol{\overline{H}}_m^ op$ is row $oldsymbol{\overline{H}}_m$

 $m{\Lambda}_q = \{q_1, \ldots, q_K\}$ such that $m{H}_m(\Lambda_q, :) = m{I}_K$ Stodden, 2003].

ing index set A_a which can be achieved by **SPA)** [Araújo et al. 2001].

d for every A_m (named as MultiSPA).

dentifiability

can perfectly identify class k, then

$$egin{aligned} egin{aligned} egi$$

co-label at least S samples $orall t \in \{m_1,\ldots,m_{T(m)}\}$, Also $\|\eta_{n}(:,l)\|_{1} \geq \eta, \forall l \in \{1, \ldots KT(m)\}, \text{ where } \eta \in (0,1].$, there exists an annotator $m_{t(k)} \in \{m_1, \ldots, m_{T(m)}\}$) $\sum_{i=1}^{K} \Pr(X_{m_{t(k)}} = k | Y = j), \ \epsilon \in [0, 1]$

 $\max(\mathbf{A}_m)\sqrt{S\eta})^{-1})$, with probability greater than $1-\delta$, $m{Z}_m = m{A}_m m{D} m{H}_m^ op$ with the estimation error bounded by $(\sigma)^{-1})$ where $\sigma_{\max}(A_m)$ is the largest singular value of

fect annotators for each class, MultiSPA

more annotators?

hat the rows of $\overline{oldsymbol{H}}_m$ are generated within the (K-1)- $\geq \Omega\left(\frac{\varepsilon^{-2(K-1)}}{K}\log\left(\frac{K}{q}\right)\right)$, then with probability greater than exed by $q_1, \ldots q_K$ such that $\|k\|_2 \leq \varepsilon, \ k = 1, \dots, K.$

otators are available, there exists high chance

Shahana Ibrahim <ibrahish@oregonstate.edu>

Problem (1) is solved by a BCD algorithm with KL divergence as the fitting criterion (used MultiSPA as initialization, thus named as MultiSPA-KL).

Amazon Mechanical Turk (AMT) Experiment Results

Algorithms	TREC		Bluebird		RTE		Web		Dog	
	(%)Error	(sec)Time								
MultiSPA	31.47	50.68	13.88	0.07	8.75	0.28	15.22	0.54	17.09	0.07
MultiSPA-KL	29.23	536.89	11.11	1.94	7.12	17.06	14.58	12.34	15.48	15.88
MultiSPA-D&S	29.84	53.14	12.03	0.09	7.12	0.32	15.11	0.84	16.11	0.12
Spectral-D&S	29.58	919.98	12.03	1.97	7.12	6.40	16.88	179.92	17.84	51.16
TensorADMM	N/A	N/A	12.03	2.74	N/A	N/A	N/A	N/A	17.96	603.93
MV-D&S	30.02	3.20	12.03	0.02	7.25	0.07	16.02	0.28	15.86	0.04
Minmax-entropy	91.61	352.36	8.33	3.43	7.50	9.10	11.51	26.61	16.23	7.22
EigenRatio	43.95	1.48	27.77	0.02	9.01	0.03	N/A	N/A	N/A	N/A
KOS	51.95	9.98	11.11	0.01	39.75	0.03	42.93	0.31	31.84	0.13
GhoshSVD	43.03	11.62	27.77	0.01	49.12	0.03	N/A	N/A	N/A	N/A
Majority Voting	34.85	N/A	21.29	N/A	10.31	N/A	26.93	N/A	17.91	N/A

- Zhang, Y., Chen, X., Zhou, D., and Jordan, M. I. Spectral methods meet em: A provably optimal algorithm for crowdsourcing. In Advances in Neural Information Processing Systems, pp. 1260–1268, 2014.
- ► Donoho, D. and Stodden, V. When does non-negative matrix factorization give the correct decomposition into parts? In Advances in Neural Information Processing Systems, pp. 1141-1148 2004.

Enhanced Identifiability

The model can be identified under a relaxed assumption by solving

- find $\{oldsymbol{A}_m\}_{m=1}^M,oldsymbol{D}$
- (1a)subject to $\boldsymbol{R}_{m,\ell} = \boldsymbol{A}_m \boldsymbol{D} \boldsymbol{A}_{\ell}^{\top}, \ \forall m, \ell \in \{1, \dots, M\}$ (1b)
 - $\mathbf{1}^{\top} \boldsymbol{A}_m = \mathbf{1}^{\top}, \ \boldsymbol{A}_m \geq \mathbf{0}, \ \forall m, \ \mathbf{1}^{\top} \boldsymbol{d} = 1, \ \boldsymbol{d} > \mathbf{0}.$ (1c)

Theorem 3 : Assume that $rank(\mathbf{D}) = rank(\mathbf{A}_m) = K$ for all $m = 1, \ldots, M$, and that there exist two subsets of the annotator, indexed by \mathcal{P}_1 and \mathcal{P}_2 , where $\mathcal{P}_1 \cap \mathcal{P}_2 = \emptyset$ and $|\mathcal{P}_1 \cup \mathcal{P}_2 \subseteq \{1,\ldots,M\}$. Suppose that from \mathcal{P}_1 and \mathcal{P}_2 the following two matrices can be

 $ilde{oldsymbol{R}} ilde{oldsymbol{R}} ilde{oldsymbol{R}} = egin{bmatrix} oldsymbol{R}_{m_1,\ell_1} & oldsymbol{R}_{m_1,\ell_2} \ dots & dots & dots & ec{oldsymbol{R}}_{m_1,\ell_2} \ oldsymbol{M}_{m_1,\ell_2} \ dots & ec{oldsymbol{R}}_{m_{|\mathcal{P}_2|},\ell_{|\mathcal{P}_2|}} \end{bmatrix} = egin{bmatrix} oldsymbol{A}_{m_1} \ dots & ec{oldsymbol{A}}_{m_1} \ dots & ec{oldsymbol{A}}_{m_{|\mathcal{P}_1|},\ell_1} \ oldsymbol{R}_{m_1,\ell_2} \ oldsymbol{M}_{m_{|\mathcal{P}_2|},\ell_{|\mathcal{P}_2|}} \end{bmatrix} = egin{bmatrix} oldsymbol{A}_{m_1} \ dots & ec{oldsymbol{A}}_{m_{|\mathcal{P}_1|}} \ oldsymbol{D}_{m_{|\mathcal{P}_1|}} \ oldsymbol{D}_{m_{|\mathcal{P}_1|}} \end{bmatrix} \ oldsymbol{D}_{m_{|\mathcal{P}_1|}} \ oldsymbo$

Denote $\boldsymbol{H}^{(1)} = [\boldsymbol{A}_{m_1}^{\top}, \dots, \boldsymbol{A}_{m_{|\mathcal{P}_1|}}^{\top}]^{\top}$, $\boldsymbol{H}^{(2)} = [\boldsymbol{A}_{\ell_1}^{\top}, \dots, \boldsymbol{A}_{\ell_{|\mathcal{P}_2|}}^{\top}]^{\top}$, where $m_t \in \mathcal{P}_1$ and $\ell_j \in \mathcal{P}_2$. Furthermore, assume that both $H^{(1)}$ and $H^{(2)}$ are sufficiently scattered. Then, solving Problem (1) recovers A_m for $m = 1, \ldots, M$ and D = diag(d) up to identical column permutation.

Extremely well trained annotators for each class are not required to satisfy sufficiently scattered condition.

Left: Sufficiently scattered H; Right: Separable H

The datasets annotated by AMT workers are used.

References

► Dawid, A. P. and Skene, A. M. *Maximum likelihood estimation of observer error-rates using* the em algorithm. Applied statistics, pp. 20–28, 1979.