
Crowdsourcing via Pairwise Co-occurrences: Identifiability and Algorithms
Shahana Ibrahim†, Xiao Fu†, Nikos Kargas‡, and Kejun Huang?

†School of EECS, Oregon State University, Corvallis, OR, USA ‡Department of ECE, University of Minnesota, Minneapolis, MN, USA
?Department of CISE, University of Florida, Gainesville, FL, USA

Data Labeling and Crowdsourcing

IMassive labeled data is a key performance booster of deep networks.
ICrowdsourcing is widely used for data labeling.

Dawid-Skene Model

IThe confusion matrix Am ∈ RK×K for each annotator m and the prior
probability vector d ∈ RK are the Dawid-Skene model parameters.

Am(km, k) := Pr(Xm = km|Y = k),
d(k) := Pr(Y = k)

IThe goal is to estimate Am for m = 1, . . . ,M and d.
Prior Art

IDawid-Skene Model [Dawid & Skene, 1979]:
I Proposed expectation maximization (EM) algorithm for ML estimation.
IWidely used, but model identifiability is unclear.

ISpectral Method [Zhang et al., 2014]:
I Established identifiability using orthogonal and symmetric tensor decomposition.
I Employed third-order co-occurrences of responses; may have high sample complexity.

Pairwise Co-occurrences of Annotator Responses

IThe joint PMF of any two annotator responses,
Rm,`(km, k`) = K∑

k=1
Pr(Y = k)
︸ ︷︷ ︸

d(k)
Pr(Xm = km|Y = k)
︸ ︷︷ ︸

Am(km, k)
Pr(X` = k`|Y = k)
︸ ︷︷ ︸

A`(k`, k)
,

=⇒ Rm,` = AmDA>` ∈ RK×K, D = Diag(d).

IRm,`’s can be estimated via sample averaging.
IRm,`’s are second-order statistics; easier to estimate than third-order ones.

Proposed Approach

IConsider an annotator m who co-labels with annotators m1, . . . ,mT (m),
Zm =

Rm,m1,Rm,m2, . . . ,Rm,mT (m)

 = Am

 DA>m1
, . . . ,DA>T (m)︸ ︷︷ ︸

H>
m

.

I `1-normalize the columns of Zm to get Zm = AmH>
m where H>

m is row
normalized.

IAssume that there exits an index set Λq = {q1, . . . , qK} such that Hm(Λq, :) = IK
(known as seperability) [Donoho & Stodden, 2003].

IEstimating Am boils down to identifyting index set Λq which can be achieved by
successive projection algorithm (SPA) [Araújo et al. 2001].

I Index identification via SPA is repeated for every Am (named as MultiSPA).

Model Identifiability

I If each class k has an annotator who can perfectly identify class k, then
Hm(Λq, :) = IK can be satisfied.

Zm = Am D
A>m1

, . . . ,

e1x
A>me1

, . . . ,

e2x
A>me2

, . . . ,

e3x
A>me3

, . . . ,A>T (m)


︸ ︷︷ ︸
H>

m

Theorem 1: Assume that annotatorsm and t co-label at least S samples ∀t ∈ {m1, . . . ,mT (m)}, Also
assume that the constructed Ẑm satisfies ‖Ẑm(:, l)‖1 ≥ η,∀l ∈ {1, . . . KT (m)}, where η ∈ (0, 1].
Suppose that for every class index k ∈ {1, . . . , K}, there exists an annotator mt(k) ∈ {m1, . . . ,mT (m)}
such that Pr(Xmt(k) = k|Y = k) ≥ (1− ε) K∑

j=1
Pr(Xmt(k) = k|Y = j), ε ∈ [0, 1]

Then, if ε ≤ O
max

K−1κ−3(Am),
√
ln(1/δ)(σmax(Am)

√
Sη)−1

, with probability greater than 1− δ,
the SPA algorithm can estimate an Âm from Zm = AmDH>

m with the estimation error bounded by
O

(√
Kκ2(Am) max

(
σmax(Am)ε,

√
ln(1/δ)(

√
Sη)−1)) where σmax(Am) is the largest singular value of

Am, and κ(Am) is the condition number of Am.
I Implication: Even if there are no perfect annotators for each class, MultiSPA

estimates Am.
Do we favour more annotators?

Theorem 2 :Let ρ > 0, ε > 0, and assume that the rows of Hm are generated within the (K − 1)-
probability simplex uniformly at random. If M ≥ Ω

ε−2(K−1)

K log
K
ρ


 , then with probability greater than

or equal to 1− ρ, there exists rows of Hm indexed by q1, . . . qK such that
‖Hm(qk, :)− e>k ‖2 ≤ ε, k = 1, . . . , K.

I Implication: If more number of annotators are available, there exists high chance
for seperability condition.

Enhanced Identifiability

IThe model can be identified under a relaxed assumption by solving

find {Am}Mm=1,D (1a)
subject to Rm,` = AmDA>` , ∀m, ` ∈ {1, . . . ,M} (1b)

1>Am = 1>, Am ≥ 0, ∀m, 1>d = 1, d ≥ 0. (1c)
Theorem 3 : Assume that rank(D) = rank(Am) = K for all m = 1, . . . ,M , and that
there exist two subsets of the annotator, indexed by P1 and P2, where P1 ∩ P2 = ∅ and
P1 ∪ P2 ⊆ {1, . . . ,M}. Suppose that from P1 and P2 the following two matrices can be
constructed:

R̃ =



Rm1,`1 Rm1,`2 . . . Rm1,`|P2|... ... . . . ...
Rm|P1|,`1 Rm1,`2 . . . Rm|P2|,`|P2|


=



Am1...
Am|P1|

.


︸ ︷︷ ︸

H (1)

D [A>`1
, . . . ,A>`|P2|

]
︸ ︷︷ ︸

(H (2))>

Denote H (1) = [A>m1
, . . . ,A>m|P1|

]>, H (2) = [A>`1
, . . . ,A>`|P2|

]>, where mt ∈ P1 and `j ∈ P2.
Furthermore, assume that both H (1) and H (2) are sufficiently scattered.Then, solving Problem
(1) recovers Am for m = 1, . . . ,M and D = diag(d) up to identical column permutation.

IExtremely well trained annotators for each class are not required to satisfy
sufficiently scattered condition.

Left: Sufficiently scattered H ; Right: Separable H

IProblem (1) is solved by a BCD algorithm with KL divergence as the fitting
criterion (used MultiSPA as initialization, thus named as MultiSPA-KL).

Amazon Mechanical Turk (AMT) Experiment Results

IThe datasets annotated by AMT workers are used.
Algorithms TREC Bluebird RTE Web Dog

(%)Error (sec)Time(%)Error (sec)Time(%)Error (sec)Time(%)Error (sec)Time(%)Error (sec)Time
MultiSPA 31.47 50.68 13.88 0.07 8.75 0.28 15.22 0.54 17.09 0.07
MultiSPA-KL 29.23 536.89 11.11 1.94 7.12 17.06 14.58 12.34 15.48 15.88
MultiSPA-D&S 29.84 53.14 12.03 0.09 7.12 0.32 15.11 0.84 16.11 0.12
Spectral-D&S 29.58 919.98 12.03 1.97 7.12 6.40 16.88 179.92 17.84 51.16
TensorADMM N/A N/A 12.03 2.74 N/A N/A N/A N/A 17.96 603.93
MV-D&S 30.02 3.20 12.03 0.02 7.25 0.07 16.02 0.28 15.86 0.04
Minmax-entropy 91.61 352.36 8.33 3.43 7.50 9.10 11.51 26.61 16.23 7.22
EigenRatio 43.95 1.48 27.77 0.02 9.01 0.03 N/A N/A N/A N/A
KOS 51.95 9.98 11.11 0.01 39.75 0.03 42.93 0.31 31.84 0.13
GhoshSVD 43.03 11.62 27.77 0.01 49.12 0.03 N/A N/A N/A N/A
Majority Voting 34.85 N/A 21.29 N/A 10.31 N/A 26.93 N/A 17.91 N/A
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