Crowdsourcing via Pairwise Co-occurrences: Identifiability and Algorithms

Shahana Ibrahim

Joint Work with Xiao Fu, Nikos Kargas, Kejun Huang

School of Electrical Engineering and Computer Science, Oregon State University

Outline

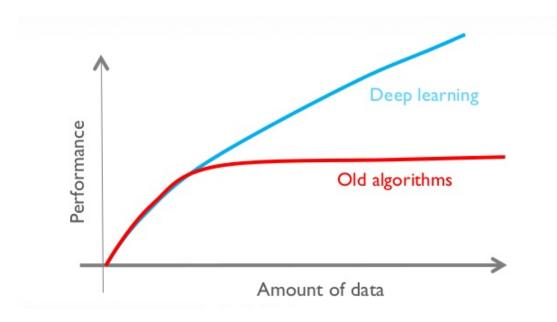
- What is Crowdsourcing?
- Problem modeling.
- Existing approaches.
- Proposed method and its implications.
- Experimental results.
- Conclusion.

The era of big data...

- Tremendous amount of data is being generated every day.
- Many supervised learning tasks, e.g. tasks in computer vision, natural language processing, speech processing heavily rely on labeled data.
- The volume of labeled data in deep learning datasets has grown to millions (e.g. ImageNet, MS.COCO).

The era of big data...

• One of the key performance boosters of the deep learning algorithms is labeled data.

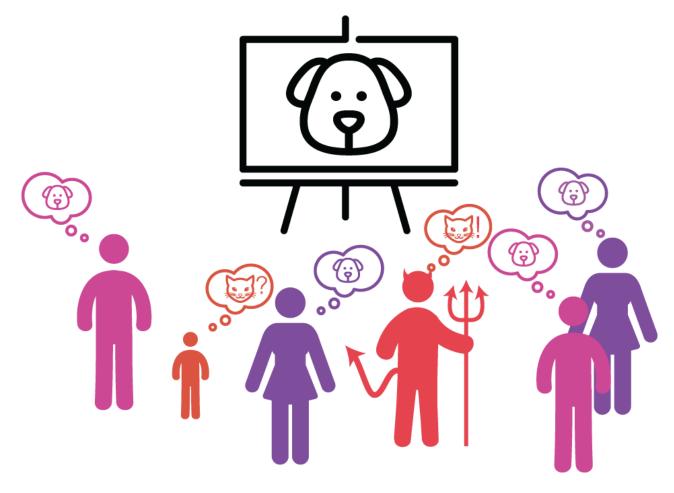


1

• But labeling is not a trivial task!!

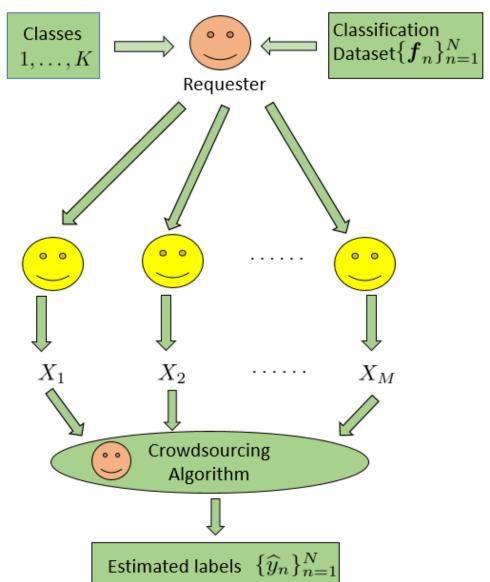
¹Source: https://www.normshield.com/machine-learning-in-cyber-security-domain-1-fundamentals/

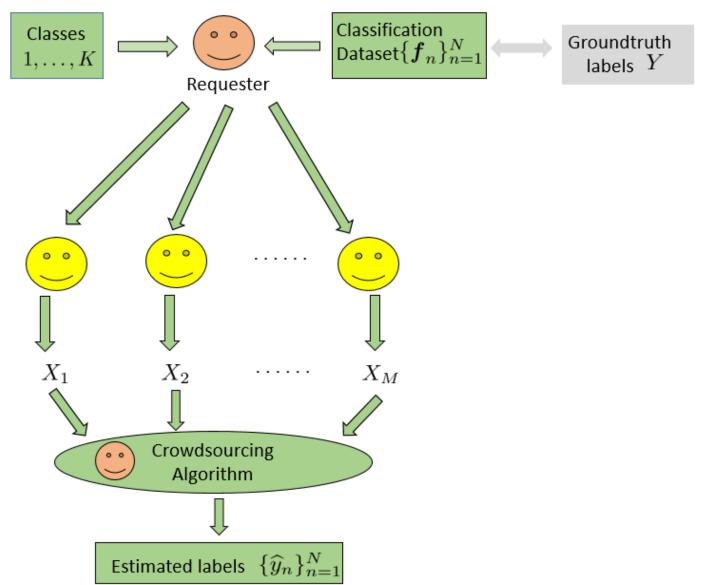
Crowdsourcing Paradigm

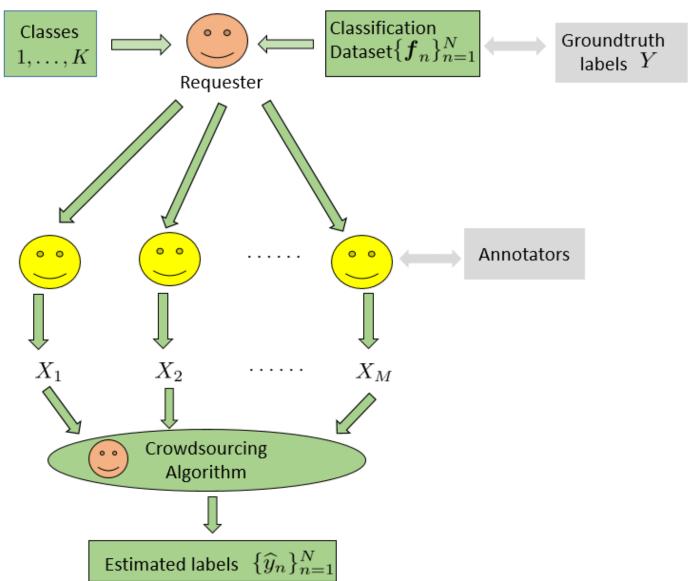


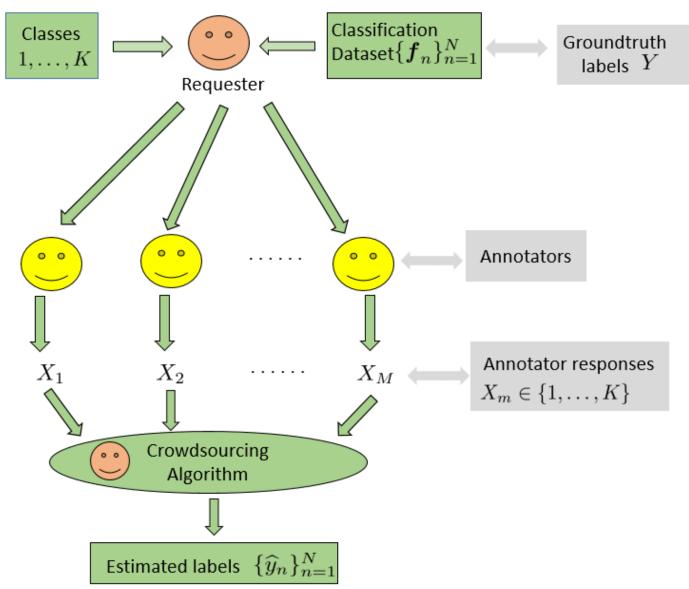
2

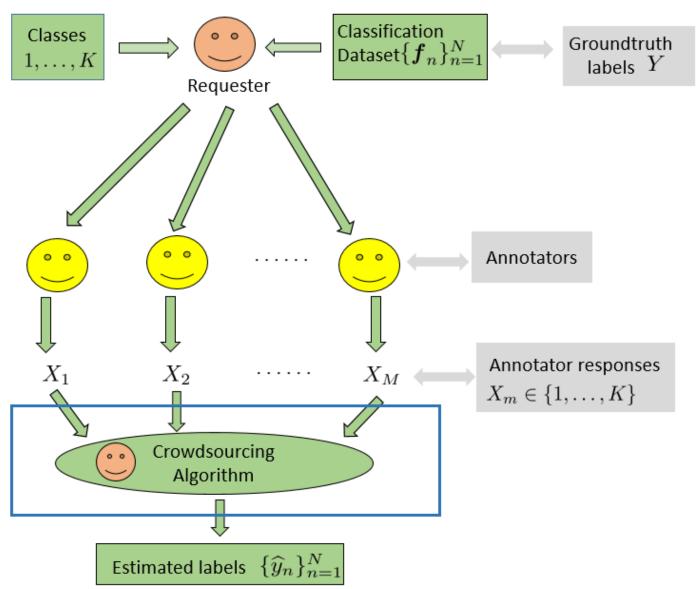
²Source: http://wires.wiley.com/WileyCDA/WiresArticle/wisId-WIDM1288.html











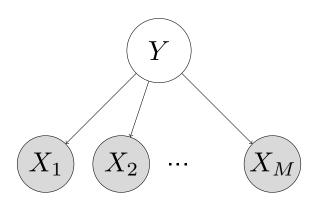
What are the challenges?

- A natural thought for a crowdsourcing algorithm is *majority voting*.
- Majority voting may not be always effective.
 - Not all annotators are equally reliable.
 - Each annotator may not be labeling all the data due to limited pay, time or lack of knowledge.

We need effective integrating algorithms for annotator responses.

Dawid-Skene Model in Crowdsourcing Problem

- One of the simplest model in crowdsourcing, but elegent and very effective.
- Crowdsourcing problem was associated to the Naive Bayes Model by [Dawid and Skene, 1979].



Dawid-Skene Model in Crowdsourcing Problem

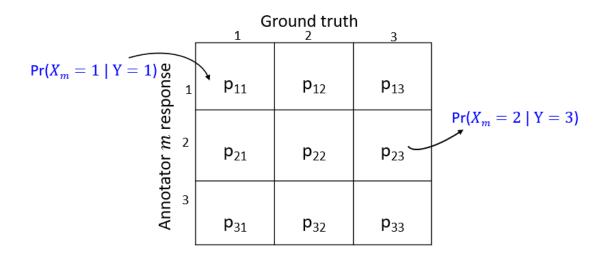
 Under Naive Bayes Model, the joint probability of annotator responses is given by,

$$\Pr(X_1 = k_1, \dots, X_M = k_M) = \sum_{k=1}^K \Pr(Y = k) \prod_{m=1}^M \Pr(X_m = k_m | Y = k).$$

• We can define the **confusion matrix** $A_m \in \mathbb{R}^{K \times K}$ for each annotator and the **prior probability vector** $d \in \mathbb{R}^K$ such that,

$$egin{aligned} oldsymbol{A}_m(k_m,k) &:= \Pr(X_m = k_m | Y = k), \ oldsymbol{d}(k) &:= \Pr(Y = k) \end{aligned}$$

Confusion Matrix



 A_m of an annotator, K=3

- ullet Note that columns of A_m and d are probability measures, so it should be nonnegetive and should sum to 1.
- So the goal is to estimate A_m for $m=1,\ldots,M$ and d.

Prior Art

• Dawid-Skene Model [Dawid and Skene, 1979] :

- Proposed the Naive Bayesian model for crowd sourcing problem.
- Based on ML estimation using expectation maximization (EM).
- Widely used, but a non-convex optimization, model identification and convergence properties are unclear.

• **Spectral Method** [Zhang et al., 2014] :

- Model identification using orthogonal and symmetric tensor decomposition.
- Provides an initialization to Dawid-Skene estimator.
- Provably effective, but using third-order co-occurrences of the annotator responses, thus suffers higher sample complexity.

• Tensor CPD method [Traganitis et al., 2018] :

- Using Canonical Polyadic Tensor decomposition (CPD) technique.
- Established the identifiability, but not scalable since general tensor decomposition is a quite challenging.
- Using third order co-occurrences of annotator responses.

Prior Art

- Dawid-Skene Model [Dawid and Skene, 1979] :
 - Proposed the Naive Bayesian model for crowd sourcing problem.
 - Based on ML estimation using expectation maximization (EM).
 - Widely used, but a non-convex optimization, model identification and convergence properties are unclear.
- **Spectral Method** [Zhang et al., 2014] :
 - Model identification using orthogonal and symmetric tensor decomposition.
 - Provides an initialization to Dawid-Skene estimator.
 - Provably effective, but using third-order co-occurrences of the annotator responses, thus suffers higher sample complexity.
- Tensor CPD method [Traganitis et al., 2018] :
 - Using Canonical Polyadic Tensor decomposition (CPD) technique.
 - Established the identifiability, but not scalable since general tensor decomposition is a quite challenging.
 - Using third order co-occurrences of annotator responses.

Pairwise-cooccureces of the response

- Second order statistics has lower sample complexity compared to any higher order statistics (by basic concentration theorems).
- Consider the pairwise joint PMF of any two annoator responses,

$$\begin{aligned} \boldsymbol{R}_{m,\ell}(k_m,k_\ell) &= \Pr(X_m = k_m, X_\ell = k_\ell) \\ &= \sum_{k=1}^K \underbrace{\Pr(Y=k)}_{\boldsymbol{d}(k)} \underbrace{\Pr(X_m = k_m | Y=k)}_{\boldsymbol{A}_m(k_m,k)} \underbrace{\Pr(X_\ell = k_\ell | Y=k)}_{\boldsymbol{A}_\ell(k_\ell,k)}. \end{aligned}$$

- ullet In matrix form, $m{R}_{m,\ell} := m{A}_m m{D} m{A}_\ell^ op$, where $m{D} = \mathrm{Diag}(m{d})$, $m{R}_{m,\ell} \in \mathbb{R}^{K imes K}$.
- In practice, if we are given with the annotator responses $X_m(\mathbf{f}_n)$, $\mathbf{R}_{m,\ell}$'s can be estimated via sample averaging.

Our Approach

- Consider an annotator m who co-labels the datasamples with annotators $m_1, \ldots, m_{T(m)}$, where T(m) is # of annotators who co-label with m.
- ullet It means, we can construct a matrix $oldsymbol{Z}_m$ as

$$oldsymbol{Z}_m = egin{bmatrix} oldsymbol{R}_{m,m_1}, oldsymbol{R}_{m,m_2}, \dots, oldsymbol{R}_{m,m_{T(m)}} \end{bmatrix}$$
 .

We can reformulate this as

$$egin{aligned} oldsymbol{Z}_m &= \left[oldsymbol{A}_m oldsymbol{D} oldsymbol{A}_{m_1}^ op, \ldots, oldsymbol{A}_m oldsymbol{D} oldsymbol{A}_{T(m)}^ op
ight] = oldsymbol{R}^{K imes KT(m)}. \ oldsymbol{H}_m^ op \end{aligned}$$

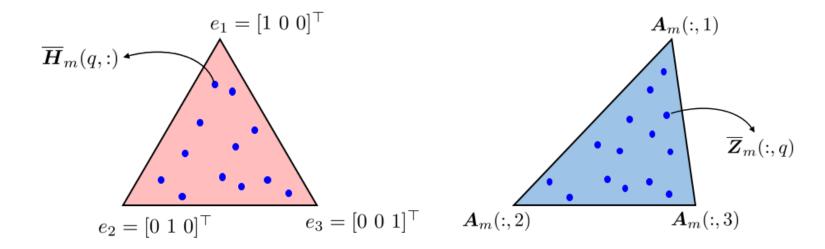
ullet In short, we have to estimate $m{A}_m$ from the formulation $m{Z}_m = m{A}_m m{H}_m^{ op}$, orall m.

Our Approach

- We first normalize the columns of Z_m to get $\overline{Z}_m = A_m \overline{H}_m^{\top}$ where \overline{H}_m^{\top} is row normalized and A_m is column normalized by definition.
- So after normalization,

$$\overline{m{H}}_m \mathbf{1} = \mathbf{1}, \ \overline{m{H}}_m \geq \mathbf{0},$$

i.e, the rows of $\overline{m{H}}_m$ lies in the probability simplex Δ_K and $\overline{m{Z}}_m \in \mathsf{conv}(m{A}_m)$

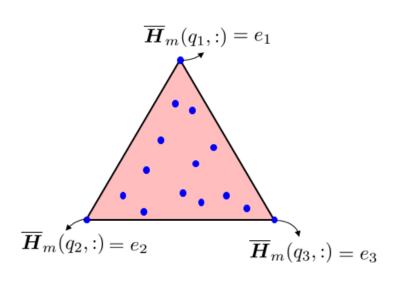


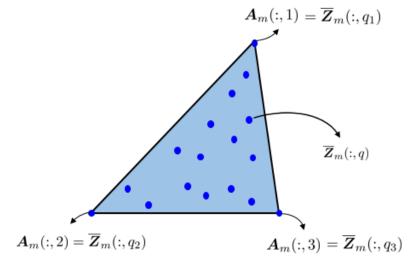
Our Approach

ullet Let us assume there exits some rows in $\overline{m{H}}_m$ such that,

$$\overline{\boldsymbol{H}}_m(\Lambda_q,:) = \boldsymbol{I}_K, \ \Lambda_q = \{q_1, \dots, q_K\}.$$

- known as seperability in Nonnegetive Matrix Factorization [Fu et al., 2018].
- $\bullet \ \ \mathsf{Since} \ \overline{\boldsymbol{Z}}_m = \boldsymbol{A}_m \overline{\boldsymbol{H}}_m^\top, \ \mathsf{then} \ \overline{\boldsymbol{Z}}_m(:, \varLambda_q) = \boldsymbol{A}_m \overline{\boldsymbol{H}}_m(\varLambda_q, :) \Rightarrow \boldsymbol{A}_m = \overline{\boldsymbol{Z}}_m(:, \varLambda_q).$





Successive Projection Algorithm (SPA)

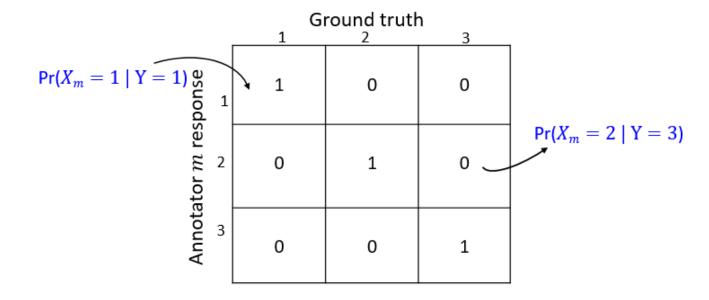
- Under the seperability assumption, our task boils down to identifyting Λ_q , an index selection problem!
- An algebraic algorithm exists which handles index identification known as Succes- $sive\ Projection\ Approximation(SPA)$ [Arora et al., 2013].
- SPA is a Gram-Schmitt-like algorithm, which only consists of norm comparisons and orthogonal projections.
- We repeat this index identification procedure via SPA for every m and thus all, A_m 's are identified and name our approach MultiSPA.

Successive Projection Algorithm (SPA)

- Under the seperability assumption, our task boils down to identifyting Λ_q , an index selection problem!
- An algebraic algorithm exists which handles index identification known as Succes- $sive\ Projection\ Approximation(SPA)$ [Arora et al., 2013].
- SPA is a Gram-Schmitt-like algorithm, which only consists of norm comparisons and orthogonal projections.
- We repeat this index identification procedure via SPA for every m and thus all, A_m 's are identified and name our approach MultiSPA.

The algorithm works under the assumption $\overline{\boldsymbol{H}}_m(\Lambda_q,:) = \boldsymbol{I}_K$. But what does this mean in crowdsourcing?

- ullet Our assumption is $\overline{m{H}}_m(\Lambda_q,:) = m{I}_K$ where $m{H}_m^ op = m{D}[m{A}_{m_1}^ op, \ldots, m{A}_{T(m)}^ op]$
- \bullet For K=3, an ideal annotator looks as below



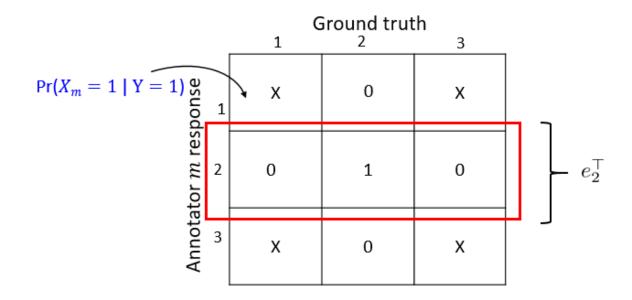
 $oldsymbol{A}_m$ of an ideal annotator

ullet If there exists an ideal annotator $m{A}_{m*}$, $m^* \in \{m_1, \ldots, m_{T(m)}\}$, such that

$$oldsymbol{Z}_m = oldsymbol{A}_m oldsymbol{D} oldsymbol{\left[A_{m_1}^ op, \ldots, A_{m^*}^ op, \ldots, A_{T(m)}^ op
ight]} oldsymbol{H}_m^ op$$

ullet This satisfies the condition $\overline{m{H}}_m(\Lambda_q,:)=m{I}_K$ and thus $m{A}_m$ can be identified.

- Another scenario...
- ullet Consider an annotator who can perfectly identify class k and never confuses with other classes,



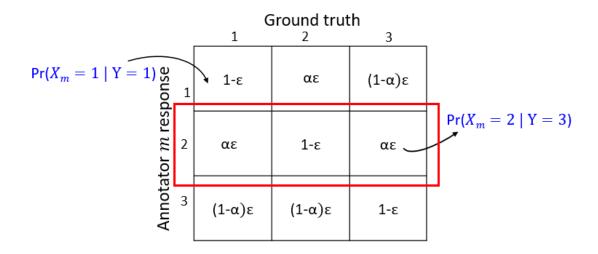
 $oldsymbol{A}_m$ of a perfect annotator for class 2

• In this way, if every class has a perfect annotator, then

$$oldsymbol{Z}_m = oldsymbol{A}_m oldsymbol{D} oldsymbol{iggl[A_{m_1}^ op, \ldots, A_{m_{e1}}^ op, \ldots, A_{m_{e2}}^ op, \ldots, A_{m_{e3}}^ op, \ldots, oldsymbol{A}_{T(m)}^ op oldsymbol{H}_m^ op oldsymbol{H}_m^ op$$

 $\overline{m{H}}_m(\Lambda_q,:) = m{I}_K$ can be satisfied

- ullet Satisfying $\overline{m{H}}_m(\Lambda_q,:) = m{I}_K$ may be too ideal.
- In practice, the annotators may not be perfect for any class, but can be reasonably good for some class. For example, reasonably good annotator for class 2,



• Under such cases, does the proposed method work??

Identification Theorem

Theorem 1: Assume that annotators m and t co-label at least S samples $\forall t \in \{m_1, \ldots, m_{T(m)}\}$, and that $\widehat{\boldsymbol{Z}}_m$ is constructed using $\widehat{\boldsymbol{R}}_{m,m_{T(m)}}$'s according to Eq. (). Also assume that the constructed $\widehat{\boldsymbol{Z}}_m$ satisfies $\|\widehat{\boldsymbol{Z}}_m(:,l)\|_1 \geq \eta, \forall l \in \{1,\ldots KT(m)\}$, where $\eta \in (0,1]$. Suppose that $\operatorname{rank}(\boldsymbol{A}_m) = \operatorname{rank}(\boldsymbol{D}) = K$ for $m = 1,\ldots,M$, and that for every class index $k \in \{1,\ldots,K\}$, there exists an annotator $m_{t(k)} \in \{m_1,\ldots,m_{T(m)}\}$ such that

$$\Pr(X_{m_{t(k)}} = k | Y = k) \geq (1 - \epsilon) \sum_{j=1}^K \Pr(X_{m_{t(k)}} = k | Y = j),$$

where $\epsilon \in [0,1]$. Then, if $\epsilon \leq \mathcal{O}\left(\max\left(K^{-1}\kappa^{-3}(\boldsymbol{A}_m),\sqrt{\ln(1/\delta)}(\sigma_{\max}(\boldsymbol{A}_m)\sqrt{S}\eta)^{-1}\right)\right)$, with probability greater than $1-\delta$, the SPA algorithm can estimate an $\widehat{\boldsymbol{A}}_m$ such that

$$\left(\min_{\mathbf{\Pi}} \|\widehat{\boldsymbol{A}}_{m}\boldsymbol{\Pi} - \boldsymbol{A}_{m}\|_{2,\infty}\right) \leq \mathcal{O}\left(\sqrt{K}\kappa^{2}(\boldsymbol{A}_{m}) \max\left(\sigma_{\max}(\boldsymbol{A}_{m})\epsilon, \sqrt{\ln(1/\delta)}(\sqrt{S}\eta)^{-1}\right)\right)$$

where $\Pi \in \mathbb{R}^{K \times K}$ is a permutation matrix, $\|Y\|_{2,\infty} = \max_{\ell} \|Y(:,\ell)\|_2$, $\sigma_{\max}(A_m)$ is the largest singular value of A_m , and $\kappa(A_m)$ is the condition number of A_m .

Identification Theorem

Theorem 1: Assume that annotators m and t co-label at least S samples $\forall t \in \{m_1, \ldots, m_{T(m)}\}$, and that $\widehat{\boldsymbol{Z}}_m$ is constructed using $\widehat{\boldsymbol{R}}_{m,m_{T(m)}}$'s according to Eq. (). Also assume that the constructed $\widehat{\boldsymbol{Z}}_m$ satisfies $\|\widehat{\boldsymbol{Z}}_m(:,l)\|_1 \geq \eta, \forall l \in \{1,\ldots KT(m)\}$, where $\eta \in (0,1]$. Suppose that $\operatorname{rank}(\boldsymbol{A}_m) = \operatorname{rank}(\boldsymbol{D}) = K$ for $m = 1,\ldots,M$, and that for every class index $k \in \{1,\ldots,K\}$, there exists an annotator $m_{t(k)} \in \{m_1,\ldots,m_{T(m)}\}$ such that

$$\Pr(X_{m_{t(k)}} = k | Y = k) \geq (1 - \epsilon) \sum_{j=1}^K \Pr(X_{m_{t(k)}} = k | Y = j),$$

where $\epsilon \in [0,1]$. Then, if $\epsilon \leq \mathcal{O}\left(\max\left(K^{-1}\kappa^{-3}(\boldsymbol{A}_m),\sqrt{\ln(1/\delta)}(\sigma_{\max}(\boldsymbol{A}_m)\sqrt{S}\eta)^{-1}\right)\right)$, with probability greater than $1-\delta$, the SPA algorithm can estimate an $\widehat{\boldsymbol{A}}_m$ such that

$$\left(\min_{\mathbf{\Pi}} \|\widehat{\boldsymbol{A}}_{m}\boldsymbol{\Pi} - \boldsymbol{A}_{m}\|_{2,\infty}\right) \leq \mathcal{O}\left(\sqrt{K}\kappa^{2}(\boldsymbol{A}_{m}) \max\left(\sigma_{\max}(\boldsymbol{A}_{m})\epsilon, \sqrt{\ln(1/\delta)}(\sqrt{S}\eta)^{-1}\right)\right)$$

where $\Pi \in \mathbb{R}^{K \times K}$ is a permutation matrix, $\|Y\|_{2,\infty} = \max_{\ell} \|Y(:,\ell)\|_2$, $\sigma_{\max}(A_m)$ is the largest singular value of A_m , and $\kappa(A_m)$ is the condition number of A_m .

Identification Theorem

Theorem 1: Assume that annotators m and t co-label at least S samples $\forall t \in \{m_1, \ldots, m_{T(m)}\}$, and that $\widehat{\boldsymbol{Z}}_m$ is constructed using $\widehat{\boldsymbol{R}}_{m,m_{T(m)}}$'s according to Eq. (). Also assume that the constructed $\widehat{\boldsymbol{Z}}_m$ satisfies $\|\widehat{\boldsymbol{Z}}_m(:,l)\|_1 \geq \eta, \forall l \in \{1,\ldots KT(m)\}$, where $\eta \in (0,1]$. Suppose that $\operatorname{rank}(\boldsymbol{A}_m) = \operatorname{rank}(\boldsymbol{D}) = K$ for $m = 1,\ldots,M$, and that for every class index $k \in \{1,\ldots,K\}$, there exists an annotator $m_{t(k)} \in \{m_1,\ldots,m_{T(m)}\}$ such that

$$\Pr(X_{m_{t(k)}} = k | Y = k) \geq (1 - \epsilon) \sum_{j=1}^K \Pr(X_{m_{t(k)}} = k | Y = j),$$

where $\epsilon \in [0,1]$. Then, if $\epsilon \leq \mathcal{O}\left(\max\left(K^{-1}\kappa^{-3}(\boldsymbol{A}_m),\sqrt{\ln(1/\delta)}(\sigma_{\max}(\boldsymbol{A}_m)\sqrt{S}\eta)^{-1}\right)\right)$, with probability greater than $1-\delta$, the SPA algorithm can estimate an $\widehat{\boldsymbol{A}}_m$ such that

$$\left(\min_{\mathbf{\Pi}} \|\widehat{\boldsymbol{A}}_{m}\boldsymbol{\Pi} - \boldsymbol{A}_{m}\|_{2,\infty}\right) \leq \mathcal{O}\left(\sqrt{K}\kappa^{2}(\boldsymbol{A}_{m}) \max\left(\sigma_{\max}(\boldsymbol{A}_{m})\epsilon, \sqrt{\ln(1/\delta)}(\sqrt{S}\eta)^{-1}\right)\right)$$

where $\Pi \in \mathbb{R}^{K \times K}$ is a permutation matrix, $\|Y\|_{2,\infty} = \max_{\ell} \|Y(:,\ell)\|_2$, $\sigma_{\max}(A_m)$ is the largest singular value of A_m , and $\kappa(A_m)$ is the condition number of A_m .

Do we favour more annotators?

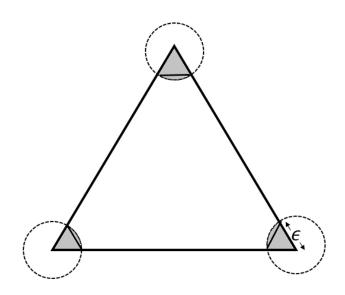
• Recall the construction of Z_m ,

$$egin{aligned} oldsymbol{Z}_m &= egin{bmatrix} oldsymbol{R}_{m,m_1}, oldsymbol{R}_{m,m_2}, \dots, oldsymbol{R}_{m,m_{T(m)}} \end{bmatrix} \ &= egin{bmatrix} oldsymbol{A}_m oldsymbol{D} oldsymbol{A}_{m_1}^ op, \dots, oldsymbol{A}_{T(m)}^ op \end{bmatrix} \in \mathbb{R}^{K imes KT(m)}. \ &= oldsymbol{A}_m oldsymbol{D} oldsymbol{A}_{m_1}^ op, \dots, oldsymbol{A}_{T(m)}^ op \end{bmatrix} \in \mathbb{R}^{K imes KT(m)}. \end{aligned}$$

Do we favour more annotators?

Theorem 2:Let $\rho>0, \varepsilon>0$, and assume that the rows of $\overline{\boldsymbol{H}}_m$ are generated within the (K-1)-probability simplex uniformly at random. If the number of annotators satisfies $M\geq \Omega\left(\frac{\varepsilon^{-2(K-1)}}{K}\log\left(\frac{K}{\rho}\right)\right)$, then, with probability greater than or equal to $1-\rho$, there exist rows of $\overline{\boldsymbol{H}}_m$ indexed by $q_1,\dots q_K$ such that

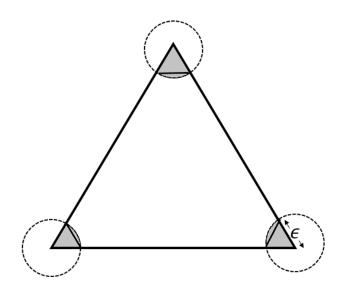
$$\|\overline{\boldsymbol{H}}_m(q_k,:) - \boldsymbol{e}_k^{\top}\|_2 \le \varepsilon, \ k = 1, \dots, K.$$



Do we favour more annotators?

Theorem 2:Let $\rho>0, \varepsilon>0$, and assume that the rows of $\overline{\boldsymbol{H}}_m$ are generated within the (K-1)-probability simplex uniformly at random. If the number of annotators satisfies $M\geq \Omega\left(\frac{\varepsilon^{-2(K-1)}}{K}\log\left(\frac{K}{\rho}\right)\right)$, then, with probability greater than or equal to $1-\rho$, there exist rows of $\overline{\boldsymbol{H}}_m$ indexed by $q_1,\ldots q_K$ such that

$$\|\overline{\boldsymbol{H}}_m(q_k,:) - \boldsymbol{e}_k^{\top}\|_2 \le \varepsilon, \ k = 1, \dots, K.$$



MultiSPA - In a Nutshell

- Based on Dawid-Skene model which is simple, yet useful.
- Simple, scalable algorithm, like Gram-Schmidt procedure.
- Enjoys lower sample complexity compared to tensor based methods.
- Model parameters can be provably identified under certain assumptions which has practical implications in crowdsourcing.

MultiSPA - In a Nutshell

- Based on Dawid-Skene model which is simple, yet useful.
- Simple, scalable algorithm, like Gram-Schmidt procedure.
- Enjoys lower sample complexity compared to tensor based methods.
- Model parameters can be provably identified under certain assumptions which has practical implications in crowdsourcing.

Can we offer stronger identifiability guarantees?

Identifiability Enhanced Theorem

Theorem 3: Assume that $\operatorname{rank}(\boldsymbol{D}) = \operatorname{rank}(\boldsymbol{A}_m) = K$ for all $m = 1, \dots, M$, and that there exist two subsets of the annotator, indexed by \mathcal{P}_1 and \mathcal{P}_2 , where $\mathcal{P}_1 \cap \mathcal{P}_2 = \emptyset$ and $\mathcal{P}_1 \cup \mathcal{P}_2 \subseteq \{1, \dots, M\}$. Suppose that from \mathcal{P}_1 and \mathcal{P}_2 the following two matrices can be constructed: $\boldsymbol{H}^{(1)} = [\boldsymbol{A}_{m_1}^\top, \dots, \boldsymbol{A}_{m_{|\mathcal{P}_1|}}^\top]^\top$, $\boldsymbol{H}^{(2)} = [\boldsymbol{A}_{\ell_1}^\top, \dots, \boldsymbol{A}_{\ell_{|\mathcal{P}_2|}}^\top]^\top$, where $m_t \in \mathcal{P}_1$ and $\ell_j \in \mathcal{P}_2$. Furthermore, assume that

- i) both $m{H}^{(1)}$ and $m{H}^{(2)}$ are $sufficiently\ scattered$;
- ii) all $m{R}_{m_t,\ell_j}$'s for $m_t \in \mathcal{P}_1$ and $\ell_j \in \mathcal{P}_2$ are available; and
- iii) for every $m
 otin \mathcal{P}_1\cup\mathcal{P}_2$ there exists a $m{R}_{m,r}$ available, where $r\in\mathcal{P}_1\cup\mathcal{P}_2$.

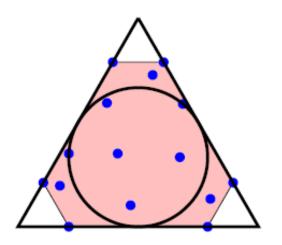
Then, solving the coupled decomposition problem recovers A_m for $m=1,\ldots,M$ up to a unified permutation ambiguity matrix.

Theorem 3 says...

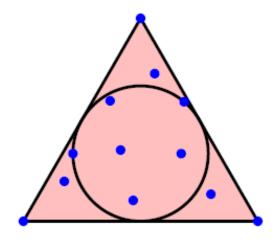
• If we have two annotator groups \mathcal{P}_1 and \mathcal{P}_2 such that all the pairwise statistics across the group are available, then there may exist a construction as below

$$egin{aligned} oldsymbol{R} &= egin{bmatrix} oldsymbol{R}_{m_1,\ell_1} & oldsymbol{R}_{m_1,\ell_2} & \dots & oldsymbol{R}_{m_1,\ell_{|\mathcal{P}_2|}} \ & dots & dots & \dots & dots \ oldsymbol{R}_{m_{|\mathcal{P}_1|},\ell_1} & oldsymbol{R}_{m_1,\ell_2} & \dots & oldsymbol{R}_{m_{|\mathcal{P}_2|},\ell_{|\mathcal{P}_2|}} \end{bmatrix} \ &= egin{bmatrix} oldsymbol{A}_{m_1} \ dots \ oldsymbol{A}_{m_{|\mathcal{P}_1|}} \end{matrix} oldsymbol{D} oldsymbol{A}_{\ell_1}^{ op}, \dots, oldsymbol{A}_{\ell_{|\mathcal{P}_2|}}^{ op} \end{matrix}] = oldsymbol{H}^{(1)} oldsymbol{D} oldsymbol{H}^{(2)} \end{matrix}^{ op}. \end{aligned}$$

• If the rows of W and H satisfies a certain geometrical property called sufficiently scattered (SS) condition, then W and H are identifiable upto trivial ambiguity [Huang et al., 2014].



Sufficiently scattered $oldsymbol{W}$



Seperable $oldsymbol{W}$

- SS is much easier to satisfy relative to seperability.
 - We do not need extremely well trained annotators for each class to satisfy SS.

Theorem 3 says...

ullet By solving the below proposed coupled decomposition problem, ${m A}_m$ for $m=1,\ldots,M$ can be estimated

find
$$\{A_m\}_{m=1}^M$$
, D
subject to $R_{m,\ell} = A_m D A_\ell^\top$, $\forall m, \ell \in \{1, \dots, M\}$
 $\mathbf{1}^\top A_m = \mathbf{1}^\top$, $A_m \geq \mathbf{0}$, $\forall m$
 $\mathbf{1}^\top d = 1$, $d \geq \mathbf{0}$.

Does SS condition favour more annotators?

Theorem 4: Let $\rho > 0, \frac{\alpha}{2} > \varepsilon > 0$,, and assume that the rows of $\boldsymbol{H}^{(1)}$ and $\boldsymbol{H}^{(2)}$ are generated from \mathbb{R}^K uniformly at random. If the number of annotators satisfies $M \geq \Omega\left(\frac{(K-1)^2}{K\alpha^{2(K-2)}\varepsilon^2}\log\left(\frac{K(K-1)}{\rho}\right)\right)$, where $\alpha=1$ for K=2, $\alpha=2/3$ for K=3 and $\alpha=1/2$ for K>3, then with probability greater than or equal to $1-\rho$, $\boldsymbol{H}^{(1)}$ and $\boldsymbol{H}^{(2)}$ are ε -sufficiently scattered.

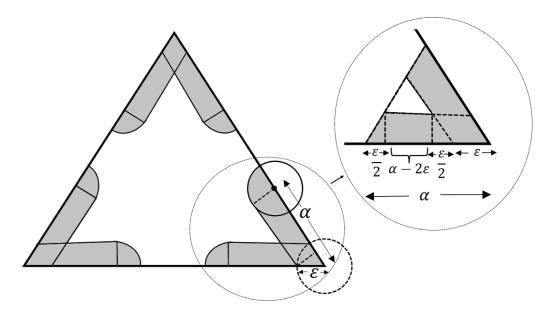


Figure 1: (ε -sufficiently scatterd)

Does SS condition favour more annotators?

Theorem 4: Let $\rho > 0, \frac{\alpha}{2} > \varepsilon > 0$,, and assume that the rows of $\boldsymbol{H}^{(1)}$ and $\boldsymbol{H}^{(2)}$ are generated from \mathbb{R}^K uniformly at random. If the number of annotators satisfies $M \geq \Omega\left(\frac{(K-1)^2}{K\alpha^{2(K-2)}\varepsilon^2}\log\left(\frac{K(K-1)}{\rho}\right)\right)$, where $\alpha=1$ for K=2, $\alpha=2/3$ for K=3 and $\alpha=1/2$ for K>3, then with probability greater than or equal to $1-\rho$, $\boldsymbol{H}^{(1)}$ and $\boldsymbol{H}^{(2)}$ are ε -sufficiently scattered.

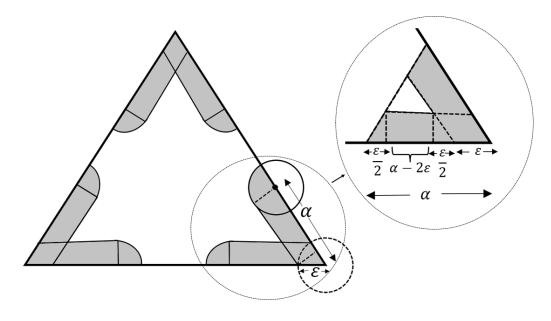


Figure 2: (ε -sufficiently scatterd)

Alternating Optimization KL Algorithm

ullet Kullback-Leibler (KL) divergence is the natural distance measure under proabability measures. Let $m{R}$ and $\hat{m{R}}$ are two probability distribution matrices, then

$$D_{KL}(\mathbf{R}||\hat{\mathbf{R}}) = -\sum_{i,j} \mathbf{R}_{ij} \log \frac{\mathbf{R}_{ij}}{\hat{\mathbf{R}}_{ij}}$$
(1)

So we use KL divergence in our fitting probelm

$$egin{align} & \min_{\{m{A}_m\}_{m=1}^M,\ m{D}} & \sum_{m,\ell} D_{KL}\left(m{R}_{m,\ell}||m{A}_mm{D}m{A}_\ell^ op
ight) \ & ext{subject to} & m{1}^ opm{A}_m = m{1}^ op,\ m{A}_m \geq m{0},\ orall m \ & m{1}^ opm{d} = 1,\ m{d} \geq m{0}, \end{aligned}$$

• It is a non-convex optimization. So, we use alternating optimization (AO) approach, by cyclically updating each parameters, solving the convex subproblems using mirror descent.

- UCI datasets (https://archive.ics.uci.edu/ml/datasets.html) are considered
- For each dataset, we use different MATLAB classifiers to annotate the data samples

Table 1: Details of UCI Datasets.

UCI dataset name	# classes	# items	# annotators
Adult	2	7017	10
Mushroom	2	6358	10
Nursery	4	3575	10

- ullet For training, we use 20% of the samples to act as training data
- In practice, not all samples are labeled by an annotator
- ullet To simulate such a scenario, each of the trained algorithms is allowed to label a data sample with probability p < 1. A smaller p means a more challenging scenario
- We use MAP estimator to predict the labels, e.g,

$$\hat{y}_{\mathsf{MAP}} = \underset{k \in [K]}{\mathsf{arg}} \max \left[\log(\boldsymbol{d}(k)) + \sum_{m=1}^{M} \log \left(\boldsymbol{A}_{m}(k_{m},k)\right) \right]$$

• We compare the performance with different baselines.

Results

Table 2: Classification Error (%) on UCI Datasets

	Nursery			Mushroom		Adult			
Algorithms	p=1	p = 0.5	p = 0.2	p=1	p = 0.5	p = 0.2	p=1	p = 0.5	p = 0.2
MultiSPA	2.83	4.54	17.96	0.02	0.293	6.35	15.71	16.05	17.66
MultiSPA-KL	2.72	4.26	13.06	0.00	0.152	5.89	15.66	15.98	17.63
MultiSPA-D&S	2.82	4.44	13.39	0.00	0.194	6.17	15.74	16.29	23.88
Spectral-D&S	3.14	37.2	44.29	0.00	0.198	6.17	15.72	16.31	23.97
TensorADMM	17.97	7.26	19.78	0.06	0.237	6.18	15.72	16.05	25.08
MV-D&S	2.92	66.48	66.61	0.00	47.99	48.63	15.76	75.21	75.13
Minmax-entropy	3.63	26.31	11.09	0.00	0.163	8.14	16.11	16.92	15.64
EigenRatio	N/A	N/A	N/A	0.06	0.329	5.97	15.84	16.28	17.69
KOS	4.21	6.07	13.48	0.06	0.576	6.42	17.19	24.97	38.29
Ghosh-SVD	N/A	N/A	N/A	0.06	0.329	5.97	15.84	16.28	17.71
Majority Voting	2.94	4.83	19.75	0.14	0.566	6.57	15.75	16.21	20.57
Single Best	3.94	N/A	N/A	0.00	N/A	N/A	16.23	N/A	N/A
Single Worst	15.65	N/A	N/A	7.22	N/A	N/A	19.27	N/A	N/A

The datasets annotated by Amazon Mechanical Turk (https://www.mturk.com)
 (AMT) workers are used here

Table 3: AMT Dataset description.

Dataset	# classes	# items	# annotators	# annotator labels
Bird	2	108	30	3240
RTE	2	800	164	8,000
TREC	2	19,033	762	88,385
Dog	4	807	52	7,354
Web	5	2,665	177	15,567

• We use MAP estimator to predict the labels, e.g,

$$\hat{y}_{\mathsf{MAP}} = \underset{k \in [K]}{\mathsf{arg}} \max \left[\log(\boldsymbol{d}(k)) + \sum_{m=1}^{M} \log \left(\boldsymbol{A}_{m}(k_{m},k)\right) \right]$$

Table 4: Classification Error (%) and Run-time (sec) : AMT Datasets

Algorithms	TREC		Bluebird		RTE	
	(%) Error	(sec) Time	(%) Error	(sec) Time	(%) Error	(sec) Time
MultiSPA	31.47	50.68	13.88	0.07	8.75	0.28
MultiSPA-KL	29.23	536.89	11.11	1.94	7.12	17.06
MultiSPA-D&S	29.84	53.14	12.03	0.09	7.12	0.32
Spectral-D&S	29.58	919.98	12.03	1.97	7.12	6.40
TensorADMM	N/A	N/A	12.03	2.74	N/A	N/A
MV-D&S	30.02	3.20	12.03	0.02	7.25	0.07
Minmax-entropy	91.61	352.36	8.33	3.43	7.50	9.10
EigenRatio	43.95	1.48	27.77	0.02	9.01	0.03
KOS	51.95	9.98	11.11	0.01	39.75	0.03
GhoshSVD	43.03	11.62	27.77	0.01	49.12	0.03
Majority Voting	34.85	N/A	21.29	N/A	10.31	N/A

Table 5: Classification Error (%) and Run-time (sec) : AMT Datasets

Algorithms	Web		D	og
	(%) Error	(sec) Time	(%) Error	(sec) Time
MultiSPA	15.22	0.54	17.09	0.07
MultiSPA-KL	14.58	12.34	15.48	15.88
MultiSPA-D&S	15.11	0.84	16.11	0.12
Spectral-D&S	16.88	179.92	17.84	51.16
TensorADMM	N/A	N/A	17.96	603.93
MV-D&S	16.02	0.28	15.86	0.04
Minmax-entropy	11.51	26.61	16.23	7.22
EigenRatio	N/A	N/A	N/A	N/A
KOS	42.93	0.31	31.84	0.13
GhoshSVD	N/A	N/A	N/A	N/A
Majority Voting	26.93	N/A	17.91	N/A

Conclusion & Future direction

- We proposed a second order statistics based approach for identifiability to the Dawid-Skene model for crowdsourcing
- The proposed multiSPA algorithm is simple, **light weight and need lower** sample complexity compared to existing tensor based methods
- We also proposed an approach with **enhanced identifiabity** and provided an alternating optimization based algorithm
- We supported our theoretical analysis using **experimental results**.
- Potential future works:
 - Analyze the dependent annotator and dependent data scenario.
 - Faster algorithm for the proposed coupled decomposition problem.

References

- S. Arora, R. Ge, Y. Halpern, D. Mimno, A. Moitra, D. Sontag, Y. Wu, and M. Zhu. A practical algorithm for topic modeling with provable guarantees. In *Proceedings of ICML*, 2013.
- Alexander Philip Dawid and Allan M Skene. Maximum likelihood estimation of observer error-rates using the em algorithm. *Applied statistics*, pages 20–28, 1979.
- Xiao Fu, Kejun Huang, Nicholas D Sidiropoulos, and Wing-Kin Ma. Nonnegative matrix factorization for signal and data analytics: Identifiability, algorithms, and applications. arXiv preprint arXiv:1803.01257, 2018.
- K. Huang, N. D. Sidiropoulos, and A. Swami. Non-negative matrix factorization revisited: New uniqueness results and algorithms. *IEEE Trans. Signal Process.*, 62 (1):211–224, Jan. 2014.

Panagiotis A Traganitis, Alba Pages-Zamora, and Georgios B Giannakis. Blind multiclass ensemble classification. *IEEE Trans. Signal Process.*, 66(18):4737–4752, 2018.

Yuchen Zhang, Xi Chen, Dengyong Zhou, and Michael I Jordan. Spectral methods meet em: A provably optimal algorithm for crowdsourcing. In *Advances in neural information processing systems*, pages 1260–1268, 2014.

- No of annotators M=25, no of classes K=3, no of items N=10000.
- Case 1: A randomly chosen annotator is assigned identity matrix as confusion matrix.

Table 6: Average MSE of the confusion matrices A_m for case 1.

Algorithms	p = 0.2	p = 0.3	p = 0.5	p=1
MutliSPA	0.0184	0.0083	0.0063	0.0034
MultiSPA-KL	0.0019	0.0009	0.0004	1.73E-04
Spectral D&S	0.0320	0.0112	0.0448	1.74E-04
TensorADMM	0.0026	0.0011	0.0005	1.88E-04
MV-D&S	_	_	0.0173	1.84E-04

- No of annotators M=25, no of classes K=3, no of items N=10000.
- Case 2: A randomly chosen annotator is assigned a diagonally dominant confusion matrix.

Table 7: Average MSE of the confusion matrices A_m for case 2.

Algorithms	p = 0.2	p = 0.3	p = 0.5	p=1
MutliSPA	0.0229	0.0188	0.0115	0.0102
MultiSPA-KL	0.0029	0.0014	0.0005	1.67E-04
Spectral D&S	0.0348	0.0265	0.0391	1.67E-04
TensorADMM	0.0031	0.0016	0.0006	1.93E-04
MV-D&S	_	_	0.0028	5.88E-04

Table 8: Classification Error(%) & Averge run-time when $d = [\frac{1}{3}, \frac{1}{3}, \frac{1}{3}]^{\top}$

Algorithms	p = 0.2	p = 0.3	p = 0.5	Run-time(sec)
MultiSPA	37.24	26.39	19.21	0.049
MultiSPA-KL	31.71	21.10	12.79	18.07
MultiSPA-D&S	31.95	21.11	12.80	0.069
Spectral-D&S	46.37	23.92	12.89	27.17
TensorADMM	32.16	21.34	12.91	56.09
MV-D&S	66.91	57.92	13.09	0.096
Minmax-entropy	62.83	65.50	67.31	200.91
KOS	71.47	61.05	13.12	5.653
Majority Voting	67.57	68.37	71.39	_

Table 9: Classification Error(%) & Averge run-time when $d = [\frac{1}{6}, \frac{2}{3}, \frac{1}{6}]^{\top}$

Algorithms	p = 0.2	p = 0.3	p = 0.5	Run-time(sec)
MultiSPA	30.75	21.29	13.67	0.105
MultiSPA-KL	23.19	16.62	10.13	18.93
MultiSPA-D&S	40.12	32.1	21.46	0.122
Spectral-D&S	56.17	49.41	39.17	28.01
TensorADMM	34.17	25.53	11.97	152.76
MV-D&S	83.14	83.15	32.98	0.090
Minmax-entropy	83.04	63.08	74.29	232.82
KOS	70.79	67.55	78.00	6.19
Majority Voting	65.37	65.57	66.06	_

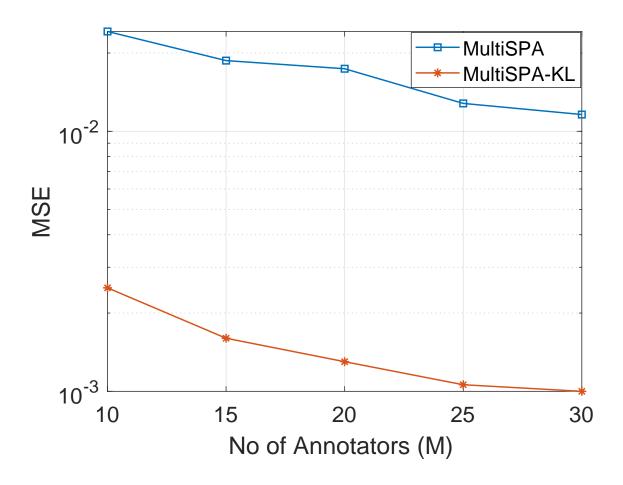


Figure 3: MSE of the confusion matrices for various values of ${\cal M}$

UCI Dataset Experiments - Run-time performance

Table 10: Average runtime (sec) for UCI datset experiments.

Algorithms	Nursery	Mushroom	Adult
MultiSPA	0.021	0.012	0.018
MultiSPA-KL	1.112	0.663	0.948
MultiSPA-D&S	0.035	0.027	0.027
Spectral-D&S	10.09	0.496	0.512
TensorADMM	5.811	0.743	4.234
MV-D&S	0.009	0.007	0.008
Minmax-entropy	19.94	2.304	6.959
EigenRatio	_	0.005	0.007
KOS	0.768	0.085	0.118
Ghosh-SVD	_	0.081	0.115

Resolving Permutation ambiguity

- SPA-estimated \hat{A}_m is up to column permutation, even if there is no noise, i.e., $\hat{A}_m = A_m \Pi_m$, Π_m is the permutation matrix.
- ullet A very practical heuristic can be used to resolve permutation ambiguity if one believes that all the annotators are reasonably trained, then we can rearrange the columns of \hat{A}_m so that it is diagonal dominant
- Once A_m are identified, d can be estimated by $D = A_m^{-1} R_{m,\ell} (A_\ell^\top)^{-1}$ using any $m,l \in \{1,\ldots,M\}$

The datasets annotated by Amazon Mechanical Turk (https://www.mturk.com)
 (AMT) workers are used here

Table 11: AMT Dataset Description

Dataset name	# classes	# items	# annotators
Bluebird	2	108	39
RTE	2	800	20
Dog	4	807	20

Classification Error (%): AMT Datasets

Algorithms	RTE	Dog	Bluebird
MultiSPA	17.87	24.9	12.96
MultiSPA-KL	17.37	24.89	11.11
Spectral-D&S	17.75	25.52	10.19
TensorADMM	17.50	40.64	10.19
MV-D&S	18.75	21.32	11.11
Majority Voting	33.62	26.59	24.07
KOS	40.12	41.38	11.11

Successive Projection Algorithm (SPA)

- An algebraic algorithm exists which handles index identification known as Succes- $sive\ Projection\ Approximation(SPA)$ [Arora et al., 2013].
- ullet Consider a column in $\overline{m{Z}}_m$, then,

$$\begin{split} \left\|\overline{\boldsymbol{Z}}_{m}(:,q)\right\|_{2} &= \left\|\sum_{k=1}^{K} \boldsymbol{A}_{m}(:,k)\overline{\boldsymbol{H}}_{m}(q,k)\right\|_{2}, \qquad \text{(data model)} \\ &\leq \sum_{k=1}^{K} \left\|\boldsymbol{A}_{m}(:,k)\overline{\boldsymbol{H}}_{m}(q,k)\right\|_{2}, \qquad \text{(triangular inequality)} \\ &= \sum_{k=1}^{K} \overline{\boldsymbol{H}}_{m}(q,k) \left\|\boldsymbol{A}_{m}(:,k)\right\|_{2}, \qquad \text{(non-negetivity of } \overline{\boldsymbol{H}}_{m}) \\ &\leq \max_{k=1,\dots,K} \left\|\boldsymbol{A}_{m}(:,k)\right\|_{2}, \qquad \text{(rows of } \overline{\boldsymbol{H}}_{m} \text{ sum to one)} \end{split}$$

Successive Projection Algorithm (SPA)

ullet By this inequality, the column index corresponding to first vertex, \hat{q}_1 is identified as,

$$\hat{q}_1 = \arg\max_{q} \ \left\| \overline{\boldsymbol{Z}}_m(:,q) \right\|_2^2. \tag{2}$$

- Then all the remaining columns of \overline{Z}_m are projected to the orthogonal complement of the selected column, we repeat the vertex identification for K-1 times.
- We repeat this index identification procedure for every m and thus all, A_m 's are identified and name our approach MultiSPA.

Successive Projection Algorithm (SPA)

ullet By this inequality, the column index corresponding to first vertex, \hat{q}_1 is identified as,

$$\hat{q}_1 = \arg\max_{q} \ \left\| \overline{\boldsymbol{Z}}_m(:,q) \right\|_2^2. \tag{3}$$

- Then all the remaining columns of \overline{Z}_m are projected to the orthogonal complement of the selected column, we repeat the vertex identification for K-1 times.
- We repeat this index identification procedure for every m, thus all A_m 's are identified and name our approach MultiSPA.

The algorithm works under the assumption $\overline{\boldsymbol{H}}_m(\Lambda_q,:) = \boldsymbol{I}_K$. But what does this mean in crowdsourcing?