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Joint Probability Mass Function (PMF) Learning

• Many ML tasks boil down to learning joint PMF of RVs.

� recommender systems

� data classification

� survey/database completion

� language modeling

Image source : Google

• Knowing joint PMF allows us to construct certain optimal predictors, e.g., MAP
and MMSE.
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Joint PMF of N RVs

Pr(𝑍𝑍1 = 𝑧𝑧1
(𝑖𝑖1), … ,𝑍𝑍𝑁𝑁 = 𝑧𝑧𝑁𝑁

(𝑖𝑖𝑁𝑁))

Each 𝑍𝑍𝑛𝑛 takes 𝐼𝐼𝑛𝑛
discrete values
{𝑧𝑧𝑛𝑛

(1), … , 𝑧𝑧𝑛𝑛
(𝐼𝐼𝑛𝑛)}

𝑍𝑍1,𝑍𝑍2, … ,𝑍𝑍𝑁𝑁

RVs Alphabets

• Short hand notation for Pr(Z1 = z
(i1)
1 , . . . , ZN = z

(iN)
N ) is Pr(i1, . . . , iN).
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Curse of Dimensionality

• Consider N = 10 RVs each taking In = 10 different values:

– joint PMF has 1010 entries to learn!!!

• The ‘naive’ approach is to count the occurrences of the joint variable realizations:

– the number of examples S � Ω(1010) to achieve reasonable accuracy.
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Existing Alternatives for Joint PMF Learning

Linear MMSE 
(LMMSE) 
estimator

Logistic regression

Kernel methods

Neural network

Linear

Nonlinear

Graphical 
models

Prior 
distributions

Approximations Assumptions
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Existing Alternatives for Joint PMF Learning

Linear MMSE 
(LMMSE) 
estimator
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These methods do not directly learn joint PMF.
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Existing Alternatives for Joint PMF Learning

Linear MMSE 
(LMMSE) 
estimator

Logistic regression

Kernel methods

Neural network

Linear

Nonlinear

Graphical 
models

Prior 
distributions

Approximations Assumptions

These methods do not directly learn joint PMF.

Can we reliably learn the joint PMF given limited data without any
structural assumptions?
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Joint PMF Learning via Tensor CPD [Kargas et al., 2018]
• Joint PMF Pr(i1, . . . , iN) can be represented as an N -th order tensor:

X(i1, . . . , iN) = Pr(i1, . . . , iN), X ∈ RI1×...×IN .

• An N -th order tensor X admits Canonical Polyadic Decomposition (CPD) with
rank F :

X(i1, . . . , iN) =

F∑
f=1

λ(f)

N∏
n=1

An(in, f), An ∈ RIn×F , λ ∈ RF .

Canonical Polyadic Decomposition (CPD)
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Joint PMF Learning via Tensor CPD [Kargas et al., 2018]

• Any joint PMF admits a naive Bayes model representation with respect to
a single hidden variable H;

X(i1, . . . , iN) = Pr(Z1 = i1, . . . , ZN = iN),

=

F∑
f=1

Pr(H = f)

N∏
n=1

Pr(Zn = in|H = f).

X(i1, . . . , iN) =

F∑
f=1

λ(f)

N∏
n=1

An(in, f). ←− CPD

H

Z1 Z2
... ZN

Decomposition of joint PMF tensor can identify the latent factors An’s and λ:

An(in, f) := Pr(Zn = in|H = f), λ(f) := Pr(H = f).

• However, X is not available. How do we identify An’s and λ then?
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Joint PMF learning via Three-dimensional marginals

• If F is small, joint PMF can be provably recovered through a coupled tensor
decomposition using only three-dimensional marginals, i.e, Pr(ij, ik, i`) for
different j, k, ` [Kargas et al., 2018].

• Many joint PMFs in real-world data are relatively low-rank tensors—since RV’s
are often “reasonably dependent” [Kargas et al., 2018].
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Challenges in Existing Approaches
• The result in [Kargas et al., 2018] is inspiring, however, some challenges exist:

– High sample complexity: Estimating Pr(ij, ik, i`)’s is not easy, since one
needs many co-occurrences of three RVs.

– High computational complexity: CPD is an NP-hard problem [Hillar and
Lim, 2013]—and the optimization involves many tensors.
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Challenges in Existing Approaches
• The result in [Kargas et al., 2018] is inspiring, however, some challenges exist:

– High sample complexity: Estimating Pr(ij, ik, i`)’s is not easy, since one
needs many co-occurrences of three RVs.

– High computational complexity: CPD is an NP-hard problem [Hillar and
Lim, 2013]—and the optimization involves many tensors.

• The work in [Yeredor and Haardt, 2019] takes an ML perspective:

– Directly estimates An’s and λ using an EM algorithm—scalable approach.
– Unclear theoretical guarantees: EM algorithm’s convergence guarantee and

estimation accuracy are unclear.
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Challenges in Existing Approaches
• The result in [Kargas et al., 2018] is inspiring, however, some challenges exist:

– High sample complexity: Estimating Pr(ij, ik, i`)’s is not easy, since one
needs many co-occurrences of three RVs.

– High computational complexity: CPD is an NP-hard problem [Hillar and
Lim, 2013]—and the optimization involves many tensors.

• The work in [Yeredor and Haardt, 2019] takes an ML perspective:

– Directly estimates An’s and λ using an EM algorithm—scalable approach.
– Unclear theoretical guarantees: EM algorithm’s convergence guarantee and

estimation accuracy are unclear.

How do we address these issues?
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Proposed Approach

• We propose a pairwise marginal-based approach.

– With the same amount of data, the second-order statistics can be estimated
with much higher accuracy, compared to the third-order ones [Han et al., 2015].

• Pairwise marginal of Zj and Zk: Pr(ij, ik) =
∑F
f=1 Pr(f)Pr(ij|f)Pr(ik|f)
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Proposed Approach

• We propose a pairwise marginal-based approach.

– With the same amount of data, the second-order statistics can be estimated
with much higher accuracy, compared to the third-order ones [Han et al., 2015].

• Pairwise marginal of Zj and Zk: Pr(ij, ik)︸ ︷︷ ︸
:=Xjk(ij,ik)

=
∑F
f=1 Pr(f)︸ ︷︷ ︸

:=λ(f)

Pr(ij|f)︸ ︷︷ ︸
:=Aj(ij|f)

Pr(ik|f).

Xjk = AjD(λ)A>k, where D(λ) = Diag(λ).

Asilomar 2020 S. Ibrahim, X. Fu, Oregon State University 14



Proposed Approach

• We propose a pairwise marginal-based approach.

– With the same amount of data, the second-order statistics can be estimated
with much higher accuracy, compared to the third-order ones [Han et al., 2015].

• Pairwise marginal of Zj and Zk: Pr(ij, ik)︸ ︷︷ ︸
:=Xjk(ij,ik)

=
∑F
f=1 Pr(f)︸ ︷︷ ︸

:=λ(f)

Pr(ij|f)︸ ︷︷ ︸
:=Aj(ij|f)

Pr(ik|f).

Xjk = AjD(λ)A>k, where D(λ) = Diag(λ).

The challenge is to identify Aj’s and λ from pairwise marginals Xjk’s.
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Identifiability of Matrix Factorization

• Key idea in [Kargas et al., 2018]: Tensors admit unique CPD, under mild
conditions.

• Pairwise distributions Xjk = AjD(λ)A>k are matrices, and low-rank matrix
decomposition is in general nonunique.

Xjk = AjD(λ)Q(AkQ
−>)>, for any nonsingular Q ∈ RF×F .

• Most natural way: apply NMF (nonnegative matrix factorization):

Xjk = Aj︸︷︷︸
W∈RIj×F

D(λ)A>k︸ ︷︷ ︸
H>∈RF×Ik

• In many cases, F � min{Ij, Ik} =⇒ NMF tools cannot be directly applied.
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Proposed Virtual NMF-based Approach

• Consider a splitting of the indices of the N variables, i.e.,

S1 = {`1, . . . , `M}, S2 = {`M+1, . . . , `N},
S1 ∪ S2 = {1, . . . , N}, S1 ∩ S2 = ∅.

• We construct the following matrix:

X̃ =

X`1`M+1
. . . X`1`N

... . . . ...
X`M`M+1

. . . X`M`N

 =

A`1
...

A`M


︸ ︷︷ ︸
W

D(λ)[A>`M+1
, . . . ,A>`N ]︸ ︷︷ ︸

H>

.

Idea: construct X̃ such that F ≤ min{MI, (N −M)I} so that W and H are
more likely to satisfy certain NMF identifiability conditions.
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Separability - A Celebrated NMF Tool
Separability [Donoho and Stodden, 2003] and ε-separability: If H ≥ 0, and
Λ = {l1, . . . , lF} such that H(Λ, :) = Σ = Diag(α1, . . . , αF ) and αf > 0, then,
H satisfies separability. When Λ = {l1, . . . , lF} satisfies ‖H(lf , :) − ef‖2 ≤ ε
for f = 1, . . . , F , H is called ε-separable.

NMF Model : X̃ = WH>

Under separability on H, estimation of W is
an index identification task: WΣ = X̃(Λ, :).

𝑒𝑒 3
=

0
0

1
T

• Successive projection algorithm (SPA) from the NMF literature [Gillis and
Vavasis, 2014] can be employed.

� very scalable - a Gram-Schmitt-like algorithm
� robust to noise and slight violation of separability
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Scalable Algorithm - CNMF-SPA

• A`n ∈ RI`n×F , n ∈ {1, . . . ,M} can be identified upto column permutations (Â`n =

A`nΠ) since

W =

A`1...

A`M

 , 1>Ak = 1
>
, Ak ≥ 0.

• A`n for n ∈ {M + 1, . . . , N} can be identified upto column permutations, since H matrix

can be estimated using (constrained) least squares, arg min
H≥0

‖X̃ −WH>‖2
F .

• λ can be identified as λ̂ = (H̃ �W )†vec(X̃) = Πλ, since

X̃ =

A`1...

A`M


︸ ︷︷ ︸

W

D(λ) [A
>
`M+1

, . . . ,A
>
`N

]︸ ︷︷ ︸
H̃
>

.

The method is very scalable - a good choice as an initialization algorithm.

Asilomar 2020 S. Ibrahim, X. Fu, Oregon State University 19



Performance Analysis of CNMF-SPA

• What are the key elements in characterizing the performance?

� S - The number of available joint realizations of N RVs
� p - Probability of observing each variable.
� ε - Deviation from separability condition.

• Splitting: S1 = {1, . . . ,M} and S2 = {M + 1, . . . , N}.

– Testing all combinations for separability is not feasible.

• Assumption 1: The rows of Am’s are generated from the (F − 1)-probability
simplex uniformly at random.

X̃ =

X`1`M+1
. . . X`1`N

... ... ...

X`M`M+1
. . . X`M`N

 =

A`1...

A`M


︸ ︷︷ ︸

W

D(λ)[A
>
`M+1

, . . . ,A
>
`N

]︸ ︷︷ ︸
H>

.

Intuition : More rows in H → better chance to satisfy separability
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Theorem 1: CNMF-SPA Performance Characterization (Informal)

Assume that M ≥ F/I, −→ Low rank condition for X̃

p = Ω

(
1
√
S

log(1/δ)

)
, −→ Prob. of observing each RV needs to be above certain threshold

S = Ω

(
FIlog(1/δ)

p2

)
, −→ More no. of joint realizations are needed for larger F and I

N = M + Ω

(
ε−2F

FI
log

(
F

δ

))
, −→ Larger N implies more rows in H

for sufficiently small 0 ≤ ε ≤ 1. Under Assumption 1, CNMF-SPA outputs Âm,m ∈ S1 with

probability at least 1− δ such that

min
Π: permuation

‖ÂmΠ−Am‖2 = O

(
max (σmax(W )

√
Fε︸ ︷︷ ︸

deviation from separability

,
M
√
IF log(1/δ)

p
√
S

)︸ ︷︷ ︸
error due to finite samples

)
.
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CNMF-SPA - In a Nutshell

2� Scalable algorithm

2� Lower sample complexity

2� Provable joint PMF recovery
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CNMF-SPA - In a Nutshell

2� Scalable algorithm

2� Lower sample complexity

2� Provable joint PMF recovery

Can we further enhance the performance of CNMF-SPA?
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EM Algorithm Meets CNMF-SPA

• Recall the joint PMF model Pr(i1, i2, . . . , iN) =
∑F
f=1 Pr(f)

∏N
n=1 Pr(in|f).

• Yeredor and Haardt [2019] proposed an EM algorithm for maximizing the log-
likelihood of the joint PMF by iterating over:

E-step: q̂ ← estimated using observed realizations and current estimates Ân and λ̂.

M-step: Â, λ̂← estimated using observed realizations and current value of q̂.

• EM algorithm exhibits promising performance and scalability.

� How to understand its performance?
� Yeredor and Haardt [2019] noticed EM converges to undesired solutions if

randomly initialized. How to properly initialize?
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Performance Analysis of EM

• We define two key parameters D1 and D2:

� D1 – measuring the average KL divergence between the columns of An.
� D2 – measuring the deviation of λ from the uniform distribution.

• Assumption 2: Assume that An,λ and the initial estimates Â
0

n, λ̂
0

satisfy

An(i, f) ≥ ρ1, λ(f) ≥ ρ2,

|Â
0

n(i, f)−An(i, f)| ≤ δ1 :=
4

ρ1(4 +D)︸ ︷︷ ︸
Initial estimation errors of An’s are bounded

, |λ̂0(f)− λ(f)| ≤ δ2 :=
4

ρ2(4 +ND)︸ ︷︷ ︸
Initial estimation error of λ is bounded
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Theorem 2: EM Convergence (Informal)

Let δmin = min(δ1, δ2), D = (D1+D2)/2. Assume that the following hold:

N = Ω

(
log(SF 2/(pρ2µ))

ρ1D

)
,−→ No. of RVs is above certain threshold

S = Ω

(
F 2 log(NFI/µ)

p2ρ2
2δ

2
min

)
,−→ More no. of joint realizations are needed for larger N ,F ,I

Then, under Assumption 2, the EM algorithm in [Yeredor and Haardt, 2019] outputs the below

with a probability at least 1− µ:

|Ân(i, f)−An(i, f)|2 = O
(

log(NFI/µ)
Sp

)
≤ δ2

1,

|λ̂(f)− λ(f)|2 = O
(
F2 log(NFI/µ)

S

)
≤ δ2

2.

 −→ est. error decreases from intial error

Insight : CNMF-SPA Initialized EM is a scalable approach with theoretical guarantees.
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Experiments: Data Classification

• Data: UCI datasets (https://archive.ics.uci.edu/ml/datasets.php).

• Training:Validation:Testing = 70%:10%:20%.

• We estimate the joint PMF of the features and the label using training set
and then predict the labels on the testing data by constructing an MAP predictor.

Table 1: UCI Dataset Car (N = 7, Iavg = 4, F = 4)

Algorithm Avg. Accuracy (%) Time (s)
CNMF-SPA [Proposed] 69.26±2.28 0.007

CNMF-SPA-EM [Proposed] 86.61±1.76 0.018
CTD [Kargas et al., 2017] 83.47±2.34 0.845

CTD-EM [Yeredor and Haardt, 2019] 85.72±1.88 0.955
SVM 83.65±1.58 0.147

Linear Regression 80.68±1.61 0.029
Neural Net 85.00±3.22 0.193
SVM-RBF 76.22±3.93 0.793

Naive Bayes 83.42±2.15 0.026
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Experiments: Data Classification

Table 2: UCI Dataset Mushroom (N = 22, Iavg = 6, F = 2)

Algorithm Avg. Accuracy (%) Time (sec.)
CNMF-SPA [Proposed] 92.23+/-6.15 0.025

CNMF-SPA-EM [Proposed] 99.47+/-0.80 0.242
CTD [Kargas et al., 2017] 96.40+/-0.59 13.695

CTD-EM [Yeredor and Haardt, 2019] 97.18+/-1.21 13.931
SVM 97.47+/-0.46 37.213

Linear Regression 93.38+/-0.59 0.040
Neural Net 98.98+/-1.97 1.036
SVM-RBF 98.89+/-0.34 2.291

Naive Bayes 94.84+/-0.55 0.048
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Conclusion

• A new framework for recovering joint PMF is proposed.

� two-dimensional marginals-based method
� reduced sample complexity and computational burden
� scalable NMF based algorithm
� effective under finite samples and sparse data

• An EM algorithm is shown to provably improve the output of our approach.

� appealing joint PMF recovery accuracy
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Thank You!!
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