Under-Counted Tensor Completion with Neural Side Information Learner

Under-counted Data

Plant-Pollinator Interactions

COVID-19 cases

- Under-counted data often arise in fields such as ecology and epidemiology
- ✤ An observer may very likely have just observed a small portion of the species' activities in some ecological datasets
- ✤ Actual number of infectious disease cases may be under-counted due to symptom-free patients or lack of testing in epidemiolocal datasets

Tensors Meet Under-counted Data

- Tensors are powerful tools for multi-aspect data analytics
- Tensor completion (TC) aims to recover a complete tensor from partial observations, often by leveraging its low rank structure
- Under-counted tensor completion (UC-TC) is less studied in literature

Key Components of the UC-TC Framework

- \Box y_i: Under-counted observations
- \square p_i : Probability of detection
- \square λ_i : Average true count
- \Box **U**₁, ..., **U**_K : Low rank tensor factors
- \square n_i : True counts
- \Box z_i : Side features, e.g., temperature,
- humidity, when observation is recorded
- \Box $g(\cdot)$: Nonlinear function

Given a few under-counted observations y_i and a set of side features z_i , can we recover the true counts and the detection probabilities for all tensor entries?

Shahana Ibrahim, Xiao Fu,

Rebecca Hutchinson, Eugene Seo

Proposed Approach

Proposed UC-TC Model

 z_i

Proposed Uncle-TC Algorithm

Maximum likelihood estimation (MLE)-based optimization

\therefore Tensor factorization-based updates for U_1, \dots, U_K

Canonical Polyadic Decomposition – a low rank tensor factorization model

• Fully connected neural network implementation for $q(\cdot)$

Recoverability Analysis for UC-TC

- The first theory backed UC-TC method in literature
- Utilizes diversity of observations & similarity of side features to show recoverability

Key Analysis Results

 \Box Estimation bound of average true counts: $|\lambda_i - \rho \widehat{\lambda}_i| \le \eta_1, \forall i$ \Box Estimation bound of detection probabilities: $|p_i - \frac{1}{2}\hat{p}_i| \le \eta_2, \forall i$ \Box A global scaling ambiguity ρ between true count estimates and detection probability estimates

Related Work

Under Counted Matrix Completion Model [Fu. et al., 2019]

Limitations:

□ Linear relation between side features and detection probabilities---do not capture complex nonlinear relationships □ Not supporting data having more than two aspects □ No theoretical guarantees

Synthetic Data Results

Real-Data Results

NTF-CPD-LS

NTF-Tucker-LS

Results on Plant Pollinator Dataset Method rRMSE | AUROC | AUPRC 0.6700.592UncleTC 9.8300.657UncleTC (Linear) 10.8620.542HaLRTC 0.59311.4440.5000.6650.501BPTF-CPD 10.8520.5910.503NTF-CPD-KL 10.361

11.252

11.196

Results on COVID-19 Dataset			
Method	rRMSE	AUROC	AUPRC
UncleTC	1.834	0.596	0.921
UncleTC (Linear)	2.162	0.534	0.914
HaLRTC	4.399	0.501	0.911
BPTF-CPD	3.304	0.590	0.919
NTF-CPD-KL	3.399	0.564	0.918
NTF-CPD-LS	3.986	0.586	0.912
NTF-Tucker-LS	3.550	0.570	0.916

References

X. Fu, E. Seo, J. Clarke, and R. Hutchinson. Link prediction under imperfect detection: Collaborative filtering for ecological networks. IEEE Transactions on Knowledge and Data Engineering, 33(8):3117–3128, 2021.

0.597

0.621

0.454

0.456