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Coupled Tensor Decomposition
• Canonical Polyadic Decomposition (CPD) aims at factoring an K-way tensor
X with rank F to its latent factors, represented as X = JA1, . . . ,AKK.

3-way tensor X with F = 3, X = JA1,A2,A3K.

• Coupled Tensor Decomposition simultaneously performs CPD to a number of
tensors X1, . . . ,XN that share some of the latent factors.
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Applications of Coupled Tensor Decomposition

• Joint PMF Learning.

– Joint PMF estimation is of great interest in statistical learning applications
such as classification, recommender systems etc.

– In general, joint PMF learning is a hard problem due to the very high dimen-
sionality.

∗ For e.g, if we have K random variables Z1, . . . , ZK each taking Ik values,
then joint PMF Pr(Z1 = i1, . . . , ZK = iK) is an estimation of

∏K
k=1 Ik

parameters.

– In practice, it is impossible to directly estimate Pr(Z1 = i1, . . . , ZK = iK) from
sample averaging when K is large.

∗ For large K, the probability of encountering any particular joint appearance
of all the random variables is very negligible.
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Joint PMF Learning

• Joint PMF Pr(Z1 = i1, . . . , ZK = iK), where Zk can take Ik different values can
be represented as a Kth-order tensor X ∈ RI1×...×IK with

X(i1, . . . , iK) = Pr(Z1 = i1, . . . , ZK = iK).

• Since every tensor has a CPD representation, the joint PMF tensor X can be
written as [Kargas, et al. 2018],

X(i1, . . . , iK) =

F∑
f=1

K∏
k=1

λ(f)Ak(ik, f), X = Jλ,A1, . . . ,AKK.

where λ ∈ RF , 1>λ = 1, λ ≥ 0, Ak ∈ RIk×F , 1>Ak = 1 and Ak ≥ 0.

• Interestingly, CPD representation can be considered as naive Bayesian model w.r.t
a latent random variable H,

– λ can be the prior probability vector with λ(f) = Pr(H = f),
– Ak can be the conditional PMF matrix with Ak(ik, f) = Pr(Zk = ik|H = f).
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Joint PMF Learning from Lower-order Marginals

• If we can estimate the latent factors λ,A1, . . . ,AK, the complete joint PMF
matrix X can be reconstructed.

– If the tensor is of low rank, then the number parameters to be estimated is
only around

∑K
k=1 IkF .

• How do we estimate the latent factors?
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Joint PMF Learning from Lower-order Marginals

• If we can estimate the latent factors λ,A1, . . . ,AK, the complete joint PMF
matrix X can be reconstructed.

– If the tensor is of low rank, then the number parameters to be estimated is
only around

∑K
k=1 IkF .

• How do we estimate the latent factors?

– Lower-order marginals of two or three random variables are much easier to
estimate and is related to the joint PMF as,

Pr(Z` = i`, Zm = im, Zn = in) =
∑

ik 6=i`,im,in

Ik∑
ik=1

Pr(Z1 = i1, . . . , ZK = iK)

where Pr(Z` = i`, Zm = im, Zn = in) is the third-order marginal PMF.

– [Kargas, et al. 2018] showed that given the joint PMFs of three random
variables, the joint PMF of all the random variables can be provably recovered
under mild conditions.
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Joint PMF Learning from Lower-order Marginals
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Coupled Tensor Decomposition

• Joint PMF can be learned via coupled tensor decomposition of the third order
marginals using the below optimization problem [Kargas, et al. 2018],

minimize
{Ak}Kk=1

,λ

K∑
`=1

K∑
m=`+1

K∑
n=m+1

∥∥X`,m,n − Jλ,A`,Am,AnK
∥∥2
F

subject to 1>Ak = 1>, Ak ≥ 0, ∀k

1>λ = 1, λ ≥ 0.

• [Traganitis, et al. 2018] proposed a similar model and coupled tensor decomposi-
tion formulation for another popular statistical learning, ie. crowsourcing.
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Coupled Tensor Decomposition

• Joint PMF can be learned via coupled tensor decomposition of the third order
marginals using the below optimization problem [Kargas, et al. 2018],

minimize
{Ak}Kk=1

,λ

K∑
`=1

K∑
m=`+1

K∑
n=m+1

∥∥X`,m,n − Jλ,A`,Am,AnK
∥∥2
F

subject to 1>Ak = 1>, Ak ≥ 0, ∀k

1>λ = 1, λ ≥ 0.

• [Traganitis, et al. 2018] proposed a similar model and coupled tensor decomposi-
tion formulation for another popular statistical learning, ie. crowsourcing.

How do we design an algorithm that can efficiently handle very large number
of coupled tensors?
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Existing Approaches
• The algorithms proposed in [Kargas, et al. 2018,Traganitis, et al. 2018] handling

coupled tensor decomposition has the following features

– Cyclic updates for each of A1, . . . ,AK,λ
– In each update of Ak, solving a subproblem using unfolded version of X`,m,n,

minimize
1>Ak=1>

Ak≥0

∑
m 6=k

∑
n 6=k
n>m

‖X(1)
k,m,n − (An �Am)DA

>
k ‖2F , (1)

– For e.g, for updating A1, (1) may be written as,

minimize
1>A1=1>

A1≥0

∥∥∥∥∥∥∥∥∥


X

(1)
1,2,3

X
(1)
1,2,4
...

X
(1)
1,2,K

−

(A3 �A2)D
(A4 �A2)D

...
(AK �A2)D

A>1
∥∥∥∥∥∥∥∥∥
2

F

– Using an ADMM algorithm to handle the subproblems.
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Existing Approaches

• Challenges:

– Very large matrix-matrix product operation is to be performed in each step
which substantially worsens the complexity.

– This way, each step needs O
((
K
2

)
IkImInF

)
flops =⇒ O(I5) if K ≈ I` = I.
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Existing Approaches

• Challenges:

– Very large matrix-matrix product operation is to be performed in each step
which substatntially worsens the complexity.

– This way, each step needs O
((
K
2

)
IkImInF

)
flops =⇒ O(I5) if K ≈ I` = I.

Huge per-iteration complexity.
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Stochastic Optmization

• Goal: Accelerate coupled tensor decomposition using stochastic optimization.

• How do we achieve this?
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Stochastic Optmization

• Goal: Accelerate coupled tensor decomposition using stochastic optimization.

• How do we achieve this?

• An example of an existing idea used in [Vervliet, et al. 2016] is as below

– Randomly sample part of the tensor, ie., a subtensor from X.
– Then apply CPD to the sampled subtensor and update the latent factors.

• The idea of random sampling can be utilized in our case also, but

– Do we need to run a complete CPD on the sampled tensor?
– How do we ensure convergence of the algorithm involving random sampling?
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Proposed Algorithm

• Sampling strategy at each iteration t:

– Sample a block variable to update from k ∈ {1, . . . ,K,K + 1}
– Then, sample m,n from {1, . . . , k − 1, k + 1, . . . ,K} to update Ak or λ.
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Proposed Algorithm

• Update strategy at each iteration t:

– Assign

A
(t+1)
k ← Proj

(
A

(t)
k − α

(t)G
(t)
k

)
.

where,

∗ Stochastic Gradient, G
(t)
k = A

(t)
k V k − (X

(1)
k,m,n)

>Hk,

∗ Hk = (An �Am)D,

∗ V k = (λλ>)~ (A>nAn)~ (A>mAm)

∗ Proj(Z) projects the columns of Z onto the probability simplex.

– We also let A
(t+1)
j ← A

(t)
j , ∀j 6= k and λ(t+1) ← λ(t) .

– λ can also be updated in similar fashion.
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Proposed Algorithm

• Update strategy at each iteration t:

– Assign

A
(t+1)
k ← Proj

(
A

(t)
k − α

(t)G
(t)
k

)
.⇐= Stochastic Proximal Gradient (SPG)

where,

∗ Stochastic Gradient, G
(t)
k = A

(t)
k V k − (X

(1)
k,m,n)

>Hk,

∗ Hk = (An �Am)D,

∗ V k = (λλ>)~ (A>nAn)~ (A>mAm)

∗ Proj(Z) projects the columns of Z onto the probability simplex.

– We also let A
(t+1)
j ← A

(t)
j , ∀j 6= k and λ(t+1) ← λ(t)

– λ can also be updated in similar fashion
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Features of the Proposed Algorithm

• Favourable run-time for large scale problems.

– Lightweight algorithm compared to [Kargas, et al. 2018,Traganitis, et al. 2018]
since update step uses only a single tensor Xk,m,n.

– We do not have very large matrix-matrix product operation in each iteration.

• Constraints to Ak or λ can be applied

– Each sampled Xk,m,n contains information about entire Ak which makes
applying constraints possible.
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Features of the Proposed Algorithm

• Favourable run-time for large scale problems.

– Lightweight algorithm compared to [Kargas, et al. 2018,Traganitis, et al. 2018]
since update step uses only a single tensor Xk,m,n.

– We do not have very large matrix-matrix product operation in each iteration.

• Constraints to Ak or λ can be applied

– Each sampled Xk,m,n contains information about entire Ak which makes
applying constraints possible.

• What are the convergence gurantees?
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Convergence of the Proposed Algorithm

Proposition 1: Let,

f(θ) = minimize
1>Ak=1>,Ak≥0

1>λ=1,λ≥0

K∑
`=1

K∑
m=`+1

K∑
n=m+1

∥∥X`,m,n − Jλ,A`,Am,AnK
∥∥2
F

where θ = [θ>1, . . . ,θ
>
K]
>, θk = vec(Ak) for k = 1, . . . ,K and θK+1 = λ. Let Jk

denote the number of available tensors whose mode-1 factor is Ak. Also let B(t) be
the filtration up to iteration t − 1. Then, by uniform sampling of the tensors, the

gradient computed at iteration t, G
(t)
k satisfies

G
(t)

k = E
[
G

(t)
k | B

(t)
]
= Ck∇θkf(θ), ∀k

where Ck > 0 is a certain constant.
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Convergence Properties

• Proposition states that G
(t)

k is a scaled version of the gradient of the objective
function f(θ) taken w.r.t. Ak

(t).

• Two-stage sampling strategy results in SPG of f(θ) using an unbiased stochastic

oracle g(t) = [vec(G
(t)
1 )>, . . . , vec(G

(t))
K+1)

>]> in each iteration t.

– all the convergence properties of the single-block SPG algorithm hold for the
proposed algorithm.

• Another key consideration is stepsize scheduling for α(t)

– SPG normally works under the Robbins-Monroe rule, i.e.,
∑∞
t=0α

(t) =∞ and∑∞
t=0(α

(t))2 <∞.
– In this work, we use the Adagrad rule as proposed in [Fu, et al. 2018, Duchi,

et al. 2011].
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Experiments - Synthetic Data

• We consider a joint PMF recovery problem to the proposed method and the
baseline LS-BCD [Kargas, et al. 2018].

• We take K = 20 random variables with each variable taking Ik = 15 discrete
values.

• The rank of the joint PMF tensor is set to different values F ∈ {5, 10}

• The columns of true latent factors Ak ∈ RIk×F and λ ∈ RF are drawn from the
probability simplex uniformly at random.

• The third order statistics of the random variables X`,m,n = Jλ,A`,Am,AnK,
∀`,m, n ∈ [K] are generated using the true latent factors and used for estimation.
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Synthetic Data Experiments
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Synthetic Data Experiments
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• The proposed algorithm outperforms the deterministic BCD algorithm LS-BCD in
both accuracy and runtime by very large margin.
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Real Data Experiments - Classification

• In this case, different UCI datasets1 are used to evaluate the classification
performance using the proposed method and the baselines LS-BCD [Kargas, et al.
2018] and KL-BCD [Kargas, et al. 2019]

• For each dataset, we run 10 Monte Carlo simulations by randomly partitioning
the dataset into training, validation and testing sets.

• Using the training dataset, X`,m,m are estimated via counting the co-occurrences
of the values taken by features `,m and n.

• For each dataset, F is chosen by observing classification accuracy on the validation
set.

• After identifying the parameters Ak and λ, we use the maximum a posteriori
(MAP) predictor to estimate the labels of the testing set.

1https://archive.ics.uci.edu/ml/datasets.html
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Experiments-Real Data -Classification

Table 1: Real data-classification results using UCI dataset

Misclassification(%) Runtime(seconds)

UCI Dataset (K, Iavg, F ) Proposed LS-BCD KL-BCD Proposed LS-BCD KL-BCD

Nursery (9,4,15) 0.086 0.087 0.094 2.98 9.85 8.34

Car (7,4,15) 0.097 0.107 0.1068 4.29 14.79 7.725

Adult ( 15,14, 15) 0.187 0.247 † 6.57 48.49 †
Connect4 (22,7,15) 0.338 0.363 0.356 6.54 52.47 389.22

Credit (15,10,10) 0.189 0.347 0.254 5.22 40.02 30.51

Heart (9,3,10) 0.198 0.213 0.2113 2.02 8.87 8.11

Mushroom (21,6,15) 0.042 0.043 0.043 8.19 69.95 378.67

Voters (17,2,15) 0.045 0.076 0.053 3.87 27.44 27.64
† means the algorithm does not converge in 500 sec. and the result is not meaningful.

• The proposed algorithm outperforms the baselines in terms of accuracy and enjoys
favourable run-time.
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Experiments-Real Data -Crowdsourcing

• We use K = 10 different classification algorithms from the MATLAB machine
learning toolbox to serve as annotators.

• Using 20% of the available data samples, each annotator is trained. Then, we
allow the annotators to label the unseen data samples with probability p.

• Setting p < 1 is equivalent to the practical scenario where not all data samples
are annotated by an annotator.

• Once the annotator responses are available, we estimate the co-occurrences of
the annotator responses `,m and n to obatin X`,m,n.

• We perform 10 trials to take the average of the results and in each trial, a
randomly selected testing set is labeled by the annotators with probability p.

• In our experiments, we set p = 0.2 for all annotators.
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Experiments-Real Data -Crowdsourcing

• The classification accuracy of the proposed method is compared with different
crowdsourcing algorithms such as LS-ADMM [Traganitis, et al. 2018] and S-D&S

[Zhang, et al. 2014].

Table 2: Real data-crowdsouring results using UCI dataset

Misclassification(%) Runtime(seconds)

UCI Dataset (K,F ) Proposed LS-ADMM S-D&S Proposed LS-ADMM S-D&S

Adult (10,2) 0.182 0.258 0.238 0.19 4.17 2.10

Connect4(10,3) 0.273 0.344 0.333 0.72 50.96 14.38

Credit (10,2) 0.166 0.175 0.166 0.18 0.45 1.49

Mushroom (10,2) 0.061 0.064 0.061 0.18 0.44 2.40

• The proposed algorithm is very competitive in both accuracy and runtime.
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Conclusion

• In this work, we proposed a stochastic sampling and optimization strategy for
coupled tensor decomposition tailored for statistical learning problems.

• The algorithm can handle a large number of latent factor-coupled tensors and can
easily deal with a variety of constraints on the latent factors.

• The algorithm admits an interesting connection to the classic single-block stochas-
tic proximal gradient scheme—thereby enjoying the same convergence properties.

• Simulations and real experiments showed that the proposed algorithm outperforms
various existing algorithms devised for similar problems in both runtime and
accuracy.
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Applications of Coupled Tensor Decomposition

• Crowdsourcing

– In machine learning, data labeling is oftentimes crowdsourced to multiple
annotators for efficiency and robustness.

– Since different annotators may create different labels for the same sample, an
effective algorithm for result fusion is desired.
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Crowdsourcing Dataflow
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Crowdsourcing Model

• The classic model in crowdsourcing proposed by Dawid-Skene [1] is also a naive
Bayesian model.

• ie., the responses of the annotators, Z1, . . . , ZK are conditionally independent
given the true label Y ,

Pr(Z1 = i1, . . . , ZK = iK) =

F∑
f=1

Pr(Y = f)

K∏
k=1

Pr(Zk = ik|Y = f),

where f ∈ {1, . . . , F} represents the class label, and ik denotes the response of
the kth annotator.
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Crowdsourcing Model

• The classic model in crowdsourcing proposed by Dawid-Skene [1] is also a naive
Bayesian model.

• ie., the responses of the annotators, Z1, . . . , ZK are conditionally independent
given the true label Y ,

Pr(Z1 = i1, . . . , ZK = iK)︸ ︷︷ ︸
X(i1,...,iK)

=

F∑
f=1

Pr(Y = f)︸ ︷︷ ︸
λ(f)

K∏
k=1

Pr(Zk = ik|Y = f)︸ ︷︷ ︸
Ak(ik,f)

,

where f ∈ {1, . . . , F} represents the class label, and ik denotes the response of
the kth annotator
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Crowdsourcing Model

• Crowdsourcing problem admits the CPD model X = Jλ,A1, . . . ,AKK. where the
latent factors,

– λ is called as the prior probability of true labels,
– A1, . . . ,AK are called as the confusion matrices.

• The estimation of true labels from the latent factors can be done by MAP
predictor [2].

• Here also, jointly observing the responses of all annotators is hard, thereby
estimating the joint co-occurences (X`,m,n) of three annotator responses is a
viable solution.

IEEE Data Science Workshop June 2019 EECS, Oregon State University 36



Crowdsourcing Model

• Crowdsourcing problem admits the CPD model X = Jλ,A1, . . . ,AKK. where the
latent factors,

– λ is called as the prior probability of true labels,
– A1, . . . ,AK are called as the confusion matrices.

• The estimation of true labels from the latent factors can be done by MAP
predictor [2].

• Here also, jointly observing the responses of all annotators is hard, thereby
estimating the joint co-occurences (X`,m,n) of three annotator responses is a
viable solution.

Coupled decomposition of all available tensors X`,m,n = Jλ,A`,Am,AnK can
solve the crowdsourcing problem.
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